

TECHNICAL NOTE

No. 31

CAPACITY SELECTION II [CALCULATION PROCEDURE]

(CONTINUOUS OPERATION) (CYCLIC OPERATION) (LIFT OPERATION)

MITSUBISHI

CONTENTS

CHAF	PTER 1 DEFINITION OF OPERATION PATTERNS AND FUNDAMENTAL CONCEPTS FOR CAPACITY SELECTION	۱۱
1. 1	Definition of operation patterns	1
1.2	Fundamental concepts for capacity selection	1
1. 3	Applicable inverter and motor series	2
CHAF	PTER 2 SELECTION PROCEDURE	3
2. 1	Selection flowchart	3
2.2	Symbols of the loads/operations required for the capacity selection	6
CHAF	PTER 3 CONTINUOUS OPERATION	7
3. 1	Calculation of load-driving power and load torque	7
3. 2	Selection of motor and inverter capacities (tentative)	8
3. 3	Assessment for the start	10
3.4	Assessment for the continuous operation	11
3.5	Assessment for the acceleration	14
3.6	Assessment for the deceleration	15
3.7	Regenerative power calculation	17
CHAF	PTER 4 CYCLIC OPERATION	19
4. 1	Calculation of load-operating power and load torque	19
4.2	Selection of motor and inverter capacities (tentative)	20
4.3	Assessment for the start	22
4.4	Assessment for the low-speed and high-speed operations	23
4.5	Assessment for the acceleration (calculation of the total acceleration torque)	24
4.6	Assessment for the deceleration (calculation of the deceleration torque)	27
4.7	Regenerative power calculation (temperature calculation of the braking option)	29
4.8	Temperature calculation of the motor and inverter	32
4.9	Stop accuracy	
CHAF	PTER 5 LIFT OPERATION	37
5. 1	Calculation of required power and load torque	37
5.2	Selection of motor and inverter capacities (tentative)	
5.3	Assessment for the start	
5.4	Assessment for the low-speed and high-speed operations	40
5.5	Assessment for the acceleration/deceleration	42
5.6	Regenerative power calculation (temperature calculation of the braking option)	46
5.7	Temperature calculation of the motor and inverter	50
5. 8	Stop accuracy	55
CHAF	PTER 6 SELECTION EXAMPLE FOR CONTINUOS OPERATION (SELECTION EXAMPLE FOR A CONVEYOR)	56
CHAF	PTER 7 SELECTION EXAMPLE FOR CYCLIC OPERATION (SELECTION EXAMPLE FOR A BOGIE)	59
CHAF	PTER 8 SELECTION EXAMPLE FOR LIFT OPERATION (LIFT WITH COUNTERWEIGHT)	67
	Technical Notes No.23 to No.25 were integrated as this document. This Technical Note targets the 500 series inverters. For the earlier models, refer to Technical Notes No.23 to No.25.]

series inverters. For the earlier models, refer to Technical Notes No.23 to No.25.

CHAPTER 1 DEFINITION OF OPERATION PATTERNS AND FUNDAMENTAL

CONCEPTS FOR CAPACITY SELECTION

1.1 Definition of operation patterns

Operations patterns are categorized into the following two patterns based on their operation time: the long-duration operation at constant speed is called "Continuous operation," and the repeated short-duration operation is called "Cyclic operation" (repetition of start ⇒ constant-speed operation ⇒ deceleration to stop). Lift operation is a part of Cyclic operation. The main characteristic of Lift operation is that it has different loads according to the rotation direction. Two loads, the positive load (normally when ascending) and the negative load (normally when descending), exist. When ascending/descending, the regenerative power for the negative load requires special attention.

Operation patterns are categorized by the following operation conditions :

Operation pattern	Number of starts/stops (operation period)	Load condition
Continuous operation	Less than 10 times/h	Positive load
Cyclic operation	10 times/h or more	Positive load
Lift operation	10 times/h or more	Positive load and negative load

 $\langle\!\!\!\langle \text{Necessary documents for the selection} \rangle\!\!\!\rangle$

Please prepare TECHNICAL NOTE No.30 CAPACITY SELECTION [DATA]

1.2 Fundamental concepts for capacity selection

(1) The machine can start

The starting torque during inverter operation should be smaller than the torque during commercial power supply operation. Select appropriate capacities for the motor and inverter so that the motor can start with the small torque available during inverter operation. Especially in Lift operation, select the motor and inverter capacities that provide enough starting torque because the object may drop due to a starting torque shortage. An inverter with Advanced magnetic flux vector control or vector control, which enables torque increase at low speed, is the optimum choice.

(2) The machine can run at low speed and at high speed

Select appropriate motor and inverter capacities so that the motor's output torque is higher than the load torque at low and high constant-speed operation.

(3) The machine can accelerate/decelerate within the specified acceleration/deceleration time

The motor current during acceleration/deceleration should be higher than the current during constant-speed operation. Select an inverter capacity that tolerates the increased current. In addition to the load characteristics (load torque, moment of inertia, speed), the acceleration/deceleration time in the operation pattern affects the amount of current flow during acceleration/deceleration.

(4) The regenerative power can be consumed

During deceleration, the regenerative power must be consumed. Braking options such as a brake unit or a regenerative converter may be required. For Lift operation, negative load is applied even during constant-speed operation. Consider using a brake unit or a regenerative converter.

(5) The operating temperature cannot exceed the permissible temperature of the motor

Check that the equivalent current of the motor torque is 100% or less and the electronic thermal relay and the transistor thermal protection are not activated.

(6) Mechanical safety brake must be used for lifting equipment

Always use a mechanical safety brake for lifting equipment to keep the stop status of the lifted object.

1.3 Applicable inverter and motor series

Applicable inverter series	Applicable motor seri
FR-A500	Standard mot
FR-F500	Constant torq
FR-E500	Geared motor
FR-S500	Vector motor
FR-V500	Standard mot

ries SF-JR, SF-HR otor que motor SF-HRCA GM-D, GM-S or SF-V5R tor with encoder SF-JR

CHAPTER 2 SELECTION PROCEDURE

2.1 Selection flowchart

(1) Continuous operation

	Selection outline	Assessment	Refer to page
Power calculation Torque calculation Motor capacity selection (tentative)	Calculate the required power and the load torque, and select a motor capacity that can be driven by the required power or higher. When selecting, also check that the rated motor torque is equal to or higher than the load torque. Required power : $P_{LR} = \frac{\mu \times W \times V_{max}}{6120 \times \eta}$ [kW]	$\begin{array}{llllllllllllllllllllllllllllllllllll$	page 7
Inverter capacity selection (tentative)	$\label{eq:Load torque: T_{LR} = \frac{9550 \times P_{LR}}{Nmax}} [N \cdot m]$ Select the inverter capacity that is equivalent to the motor capacity. If higher acceleration torque is required, select the inverter capacity, which is higher than the motor	Selected inverter capacity (tentative) : Pi∾v Pi∾v ≥ P _M	8
Assessment for start	capacity. Check that the starting torque of the motor is larger than the load torque at start. Maximum starting torque of the motor : $T_{MS} = T_M \times \alpha_S \times \delta$ α_S : Starting torque coefficient δ : Hot motor coefficient Load torque at start : T_{LS}	T _{MS} > TLS	10
Assessment for continuous operation	Check that the load torque is within the continuous operation torque range of the motor. Continuous operation torque of the motor: $T_{MC} = T_M \times \alpha_C$ α_C : Continuous operation torque coefficient	T _{MC} =T _M × α _C > T _{LR}	11
Assessment for acceleration (Shortest acceleration time calculation)	Calculate the shortest acceleration time. Check that the value satisfies the desired acceleration time. Shortest acceleration time : $\frac{\sum J \times Nmax}{9.55(T_M \times \alpha a - T_{LRMax})} [s]$	Desired acceleration time : ta tas < ta	14
Assessment for deceleration (Shortest deceleration time calculation)	Linear acceleration torque coefficient : α a Calculate the shortest deceleration time. Check that the value satisfies the desired deceleration time. Shortest deceleration time : $\frac{\sum J \times Nmax}{9.55(T_M \times \beta + T_{LRMin})}$ [S] Deceleration torque coefficient : β	Desired deceleration time : td tds < td	15
Regenerative power calculation	 Check how much regenerative power can be consumed during deceleration. Check how much regenerative power can be consumed during continuous regenerative operation. Power to be regenerated to the inverter : W_{INV} Short-time permissible power : W_{RS} 	W _{RS} > W _{INV}	17

(2) Cyclic operation

	Selection outline	Assessment	Refer to page
Power calculation Torque calculation Motor capacity selection (tentative)	Calculate the required power and the load torque, and select a motor capacity that can be driven by the required power or higher. When selecting, also check that the rated motor torque is equal to or higher than the load torque. Required power : $P_{LR} = \frac{\mu \times W \times V_{max}}{6120 \times \eta}$ [kW]		19
	Load torque : $T_{LR} = \frac{9550 \times P_{LR}}{N_{max}}$ [N·m]		
Inverter capacity selection (tentative)	Select the inverter capacity that is equivalent to the motor capacity. If higher acceleration torque is required, select the inverter capacity, which is higher than the motor capacity.	Selected inverter capacity (tentative) : P_{INV} $P_{INV} \ge P_M$	20
Assessment for start	Check that the starting torque of the motor is larger than the load torque at start. Maximum starting torque of the motor : $T_{MS} = T_M \times \alpha_S \times \delta$ α_S : Starting torque coefficient δ : Hot motor coefficient Load torque at start : T_{LS}	Tms >Tls	22
Assessment for low-speed operation Assessment for high-speed operation	Check that the output torque of the motor during low-speed and high-speed operation is larger than the load torque. Torque during low-speed operation : $T_M \times \alpha m \times \delta$ Torque during high-speed operation : $T_M \times \alpha m$ αm : Maximum short-time torque coefficient	During low-speed operation $T_M \times \alpha m \times \delta > T_{LR}$ During high-speed operation $T_M \times \alpha m > T_{LR}$	23
Assessment for acceleration (Acceleration torque calculation)	Check that the output torque of the motor during acceleration is larger than the total torque during acceleration. Acceleration torque : $Ta = \frac{\sum J \times Nmax}{9.55 \times ta}$ [N·m] Total acceleration torque : Tat=Ta + TLRmax Output torque of the motor during acceleration : TM × αa αa : Linear acceleration torque coefficient	T _M ×αa>Tat=Ta + Tικmax	24
Assessment for deceleration (Deceleration torque calculation)	Check that the output torque of the motor during deceleration is larger than the total torque during deceleration. Deceleration torque : $Td = \frac{\sum J \times Nmax}{9.55 \times td}$ [N·m] Total deceleration torque : $Tdt = -Td + T_{LRMin}$ Output torque of the motor during deceleration : $T_M \times \beta$ β : Brake torque coefficient	Tм×β>Tdt= -Td + T⊔Rmin	27
Regenerative power calculation	 (1) Check the short-time permissible power (2) Check the average regenerative power W_{INV} : Power to be regenerated to the inverter td : Deceleration time of one cycle tc : Total time of one cycle 	W _{RS} >W _{INV} W _{RC} >W _{INV} × td/tc	29
Motor temperature calculation	(1) Check that the equivalent current of the motor torque $I_{MC} = \sqrt{\frac{\sum (\ln^2 \times tn)}{\sum (Cn \times tn)}} < 10$ (2) Check that the electronic thermal relay does not get a (3) Check that the transistor protection thermal does not get a	0 [%] ictivated.	32
V	• Calculate the stop accuracy by the mechanical brake.	yol adiivaled.	36

(3) Lift operation

	Selection outline	Assessment	Refer to page
Power calculation Torque calculation Motor capacity selection (tentative)	Calculate the required power and the load torque, and select a motor capacity that can be driven by the required power or higher. When selecting, also check that the rated motor torque is equal to or higher than the load torque. Required power $: P_{LR} = \frac{W \times V_{max}}{6120 \times \eta}$ [kW]	Selected motor capacity (tentative) : P_M Selected rated motor torque (tentative) : T_M $P_M \ge P_{LR}$ $T_M \ge T_{LR}$	37
Inverter capacity selection (tentative)	$\label{eq:Load torque: TLR} = \frac{9550 \times P_{LR}}{Nmax} [N\cdotm]$ Select the inverter capacity that is equivalent to the motor capacity. If higher acceleration torque is required, select the inverter capacity, which is higher than the motor capacity.	Selected inverter capacity (tentative) : P _{INV} P _{INV} ≥ P _M	38
Assessment for	Check that the load torque of the motor is larger than the load torque at start. Maximum starting torque of the motor : $T_{MS} = T_M \times \alpha s \times \delta$ αs : Starting torque coefficient δ : Hot motor coefficient Load torque : T_{LR}	T _{MS} >T _{LR}	39
Assessment for low-speed operation Assessment for high-speed operation	Check that the output torque of the motor is larger than the load torque (during power driving and regenerative driving).	During low-speed and high-speed operations During power driving : $T_M \times \alpha_M \times \delta > T_{LU}$ During regenerative driving : $T_M \times \beta \times \delta > T_{Lf}$	40
Assessment for acceleration (Acceleration torque calculation)	Check that the output torque of the motor during acceleration is larger than the total torque during acceleration. Acceleration torque : $Ta = \frac{\sum J \times Nmax}{9.55 \times ta}$ [N·m] Total acceleration torque : $Tat = Ta + TLU$ Output torque of the motor during acceleration : $T_M \times \alpha a$	Тм ×αа>Tat	42
Assessment for deceleration (Deceleration torque calculation)	Linear acceleration torque coefficient : α a Check that the output torque of the motor during deceleration is larger than the total torque during deceleration. Deceleration torque : Td = $\frac{\Sigma J \times Nmax}{9.55 \times td}$ [N·m] Total deceleration torque : Tdt = -Td+TLf Output torque of the motor during deceleration : TM× β Brake torque coefficient : β	T _M × β > Tdt	42
Regenerative power calculation	 (1) Check the short-time permissible power (2) Check the regenerative power generated in the continuous regenerative operation range (3) Check the average regenerative power Wnc : Average power in the continuous regenerative operation range WINV : Power to be regenerated to the inverter 	Wrs> Wn ×0.9 Wrs>Wnc Wrc>Winv	46
Motor temperature calculation	(1) Check that the equivalent current of the motor torque $I_{MC} = \sqrt{\frac{\sum (\ln^2 \times tn)}{\sum (Cn \times tn)}} < 10^{-10}$ (2) Check that the electronic thermal relay does not get a	00 [%] activated.	50
End	(3) Check that the transistor protection thermal does not Calculate the stop accuracy by the mechanical brake.		55

2.2 Symbols of the loads/operations required for the capacity selection

Table 2.1 Symbols and units of characteristics

	Characteristic	Symbol	SI units	Converted value
	Required power	Plr	kW	
	Motor capacity	Рм	kW	
	Number of motor poles	Р		
	Motor speed	N	r/min	
	Frequency	f	Hz	
	Travel speed	V	m/min	
tic	Load mass (moving mass)	W	kg	
eris	Machine efficiency	η		
acti	Friction coefficient (driving resistance)	μ		
han	Load torque at motor shaft (constant-speed)	TLa (Note 3)	N·m	1 kgf·m= 9.8 N·m
Machine-side characteristic	Load moment of inertia at motor shaft	JL	kg·m²	$J = \frac{GD^2}{dt}$
Machi	Mechanical brake moment of inertia at motor shaft	JB	kg·m²	$J = \frac{GD^2}{4}$
	Cycle time (one cycle)	tc	s	
	Time in each operation block	tn	s	
	Acceleration time	ta	s	
	Deceleration time	td	s	
	Acceleration speed	Acc	m/s ²	
	Rated motor speed	Nм(Note 1)	r/min	
	Rated motor torque	Tm₀(Note 3)	N∙m	1 kgf·m= 9.8 N·m
	Acceleration torque	Ta⊨(Note 3)	N∙m	1 kgf·m= 9.8 N·m
	Deceleration torque	Td₀(Note 3)	N∙m	1 kgf·m= 9.8 N·m
	Rated brake torque	Тв	N∙m	1 kgf·m= 9.8 N·m
	Load torque ratio	TF	%	
Considered characteristic	Motor moment of inertia	Јм	kg·m²	$J = \frac{GD^2}{4}$
teri	Margin coefficient for tentative motor selection	k₽	——	
arac	Maximum short-time torque coefficient	αm	——	
châ	Maximum starting torque coefficient	as		
ed	Linear acceleration torque coefficient	a		
idei	Continuous operation torque coefficient	ac		
Suc	Brake torque coefficient (generic name)	β		
ŏ	Brake duty	%ED (Loaded time ratio)	%	ED : Abbreviation of "Einschalt-Dauer"
	Motor-consuming power conversion coefficient	k		
	Hot coefficient	δ		
	Cooling coefficient	С		
	Motor current	1	%	
	Equivalent current of motor torque	мс	%	
	Electronic thermal relay operation time	tπ+n	S	
	Regenerative power consumed by motor	WM	Ŵ	
Regenerative power	Power regenerated to inverter	WINV	W	
erai	Power regenerated from machine	WMECH	W	
gener	Average power in the continuous regenerative operation range	Wnc	W	
P P	Continuous operation permissible power of a braking option	WRC	W	
	Short-time permissible power of a braking option activation	Wrs	W	
ž	Time to stop	tb	s	
	p		-	
Stop accuracy	Distance to stop	S	mm	

Note (1) "max" on symbols indicates the maximum value. "min" indicates the minimum value. (Example: T_{LRmax})

(2) The numbers such as 1, 2, 3 ... n, which follows the symbols, indicate different conditions of the characteristic represented by the symbol. (Example: I₁, I₂)

(3) The following characteristics are indicated in the \Box part : S, at start; R, at constant-speed; t, total; U, ascending (power driving); f, descending (regenerative driving); C, continuous.

CHAPTER 3 CONTINUOUS OPERATION

CONTINUOUS OPERATION

3.1 Calculation of load-driving power and load torque

Load characteristics (power, operation pattern, etc.) are required for the calculation. (Refer to Table 2.1.) Especially if the power value is unclear, correct assessment cannot be performed. Use the following procedure for the calculation.

(1) Required power PLR

Size of a load differs by the machine (load type), but it can be roughly categorized into the following : "constant-torque load" represented by a conveyor, "variable-torque load" such as a fan and pump, and "constant-output load" such as a winding machine.

For the details of required power calculation, refer to TECHNICAL NOTE No.30 (Appendix)

1) When the load torque is known

$$P_{LR} = \frac{T_{LR} \times Nmax}{9550}$$
 [kW] (3.1-1)

TLR: Load torque at motor shaft [N·m]Nmax: Maximum motor speed [r/min]

2) When calculating the value from the characteristics at machine side

Example: Conveyor

$$\mathsf{P}_{\mathsf{LR}} = \frac{\mu \times \mathsf{W} \times \mathsf{V}_{\mathsf{max}}}{6120 \times \eta} \qquad [\mathsf{kW}] \quad \cdots (3.1-2)$$

: Friction coefficient

: Load mass [kg]

Vmax : Maximum travel speed [m/min]

- : Machine efficiency
- 3) When calculating the value from the motor current (when operating the pre-installed machine with the commercial power supply)

μ W

ŋ

The required power can be calculated with the measured current size of the motor. It can be calculated based on the test report of the connected motor.

(2) Load torque at motor shaft TLR

When the load torque is unknown, the value can be calculated with the required power PLR in the following formula.

T_{LR} =
$$\frac{9550 \times P_{LR}}{Nmax}$$
 [N·m] … (3.1-3)

(Note) The motor speed N_{max} is the speed at the required power P_{LR} (travel speed is V_{max}).

(It is not the rated motor speed.)

(Information) When calculating the value from the characteristics at machine side

$$T_{LR} = \frac{\mu \times 9.8 \times W \times V_{max}}{2\pi N_{max} \times \eta} \qquad [N \cdot m] \qquad \cdots (3.1-4)$$

Points for the minimum load torque -

In some cases, the load torque in the regenerative-drive area is calculated with the machine efficiency $\eta = 1$ considering the safety, and the obtained torque from this calculation is used as the minimum load torque T_{LRmin}.

(3) Load moment of inertia at motor shaft

Calculate this value in the same manner as for the load torque by referring to TECHNICAL NOTE No.30 (Appendix).

1) When calculating the value from the characteristics at machine side

2) When the moment of inertia at the load shaft is known

$$J_{L} = J_{LO} \times \left(\frac{N_{LO}}{Nmax}\right)^{2} \qquad [kg \cdot m^{2}] \cdots (3.1-6)$$

: Moment of inertia at the load-driving shaft [kg·m²]

- NLO : Speed at the load-driving shaft [r/min]
- Nmax : Maximum motor speed [r/min] (Speed at V_{max})

3.2 Selection of motor and inverter capacities (tentative)

(1) Selection of the motor capacity (tentative)

Select a motor capacity (tentative) based on the required power obtained in the last section. <u>Select a</u> motor capacity that is equal to or higher than the required power in typical operations.

JLO

Motor capacity $P_M \ge$ Required power $P_{LR}[kW]$... (3.2-1)

Example: When the required power PLR=2.8kW, tentatively select the motor capacity 3.7kW, which is the closest to the required power.

Тм

Рм

Nм

Check if the tentatively selected motor capacity satisfies the following condition.

Check if the load torque is within the rated motor torque.

If the value does not satisfy the formula, try a larger-capacity motor, and re-evaluate.

 $T_{M} = \frac{9550 \times P_{M}}{N_{M}} \ge T_{LR} \qquad [N \cdot m] \qquad \cdots (3.2-2)$

- : Rated motor torque [N·m]
- : Rated motor output [kW]
- : Rated motor speed [r/min] (Use the synchronous speed for the calculation.)

CONTINUOUS OPERATION

Points for motor capacity selection

Example: Different motor speeds (1600r/min and 1200r/min) produce different load torques although the required power (2.8kW) is the same. Because of this, different motor capacity must be selected.

When the motor capacity 3.7kW is selected according to the required power 2.8kW :

Rated motor torque $T_M = \frac{9550 \times 3.7}{1800} = 19.6$ [N·m]

• When the required torque is 2.8kW, and the motor speed is 1200r/min :

Load torque
$$T_{LR} = \frac{9550 \times 2.8}{1200} = 22.3$$
 [N·m]

Тм=19.6<Тьк=22.3

Even though the load torque T_{LR} is larger than the rated motor torque T_M and the required power is 2.8kW, the 3.7kW motor cannot be used. In this case, select a 5.5kW motor.

• When the required torque is 2.8kW, and the motor speed is 1600r/min :

Load torque T_{LR} = $\frac{9550 \times 2.8}{1600}$ = 16.7 [N·m]

 T_M =19.6>TLR=16.7 Because the load torque T_{LR} is within the rated motor torque T_M , a 3.7kW motor can be used.

(2) Selection of the inverter capacity (tentative)

Select the inverter capacity (tentative) based on the motor capacity (tentative) obtained in the last section. When using a motor with six poles or more, check that the rated inverter current is equal to or higher than the rated motor current.

Selected inverter capacity (tentative) $P_{INV} \ge Rated motor output P_M$ [kW] ... (3.2-3)

Points for inverter capacity selection

Choice of an inverter model (series) affects the generated torque, the continuous operation range, and the braking efficiency of the motor. Consider this when selecting an inverter model.

- Generated torque of the motor (maximum short-time torque and starting torque)
- The generated torque under (Advanced) magnetic flux vector control is larger than the torque under conventional V/F control.
- Continuous operation range (the running frequency range where the 100% torque is generated) The continuous operation range widens when using a 1.5kW motor or less under (Advanced) magnetic flux vector control.
- Braking efficiency (built-in brake resistor) The inverter with a built-in brake resistor is suitable for outputting a brake torque and consuming the regenerative power during deceleration.

3.3 Assessment for the start

To start driving a machine (load), the starting torque of the motor must be larger than the starting torque of the load.

Find out the starting torque of the motor to determine if the machine can be started. The following conditions must be satisfied.

(1) Starting torque of the motor

The starting torque of the motor during inverter operation is smaller than the torque during commercial power supply operation.

The starting torque of the motor is affected by the following conditions.

- Inverter capacity The starting torque is larger when a larger-capacity inverter is connected to the motor.
 - However, there is a limit to the connectable inverter capacity.
- Control method of the inverter
- The starting torque under (Advanced) magnetic flux vector control is larger than the torque under V/F control.
 Torque boost

Under V/F control, the higher the torque boost setting is, the larger the starting torque becomes. (Starting torque.....high torque boost setting)

The maximum starting torque of the motor can be calculated by the following formula.

 $T_{MS} = T_M \times \alpha_S \times \delta \quad [N \cdot m] \quad \cdots \quad (3.3-1)$

 T_{MS} : Starting torque [N·m]

- as : Maximum starting torque coefficient...Select according to TECHNICAL NOTE No.30
- δ : Hot coefficient...Select according to TECHNICAL NOTE No.30

The load torque at start can be calculated by the following formula.

$$T_{LS} = \frac{\mu_{S} \times 9.8 \times W \times V_{max}}{2\pi N_{max} \times \eta} [N \cdot m] \cdots (3.3-2)$$

- TLS : Load torque at start [N·m]
- W : Load mass [kg]

 $\mu_{\rm S}$: Friction coefficient at start

- V_{max} : Maximum travel speed [m/min]
- N_{max} : Maximum motor speed [r/min]
- η : Machine efficiency

(2) Assessment for the start

The machine can be started if the following condition is satisfied.

Maximum starting torque of motor T_{MS} > Load torque at start T_{LS} ... (3.3-3)

Example : • Load torque at start TLS=11 [N·m]

- Motor capacity of 3.7kW 4P (T_M = 19.6 [N·m])
- FR-A520-3.7K inverter (V/F control with standard torque boost setting)

Starting torque of the motor $T_{MS} = T_M \times \alpha_S \times \delta$

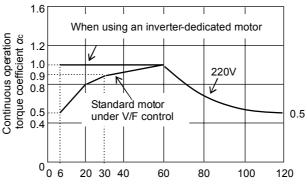
- =19.6×0.8×0.85 = 13.3 > T_{LS} = 11 ⇒ The machine can be started αs : Maximum starting torque coefficient 0.8 (Power driving performance data in TECHNICAL NOTE No.30)
- δ : Hot coefficient 0.85 (Outline of Technical Note No.30 [DATA] in TECHNICAL NOTE No.30)

(Note) The output frequency (starting frequency) is determined for the starting torque coefficient of the motor α_s . When the desired minimum operation frequency is within the starting frequency, certain limits are applied to the operation range.

Operation may not be performed at the frequency equal to or lower than the starting frequency.

CONTINUOUS OPERATION

(3) Countermeasures to take when the start is unavailable


- 1) Change V/F control \Rightarrow (Advanced) magnetic flux vector control.
- 2) Use a larger-capacity inverter.
- 3) Use a larger-capacity inverter and a larger-capacity motor.

3.4 Assessment for the continuous operation

When the load torque T_{LR} is within the maximum short-time torque of the motor, the motor can rotate. However, in order to operate continuously, the maximum temperature of the motor must not be exceeded. Permissible temperature of the motor differs by the running frequency. Decide whether a continuous operation can be performed based on the "continuous operation torque characteristic."

(1) Motor temperature characteristic during continuous operation

Cooling efficiency of a motor reduces as the output frequency decreases. Because of this, the permissible temperature of the motor also decreases in most cases.

Output frequency [Hz]

Figure 3.1 Torque characteristic during continuous operation of the motor

- (Note) 1. Under V/F control, the continuous operation range differs by the torque boost setting. If the torque boost setting is maximum, a continuous operation cannot be performed at 15Hz or less.
 - 2. The continuous operation torque coefficient does not increase by only increasing the inverter capacity.
 - 3. For the continuous operation torque characteristic of each motor and control, refer to TECHNICAL NOTE No.30 [DATA].
- "Reference torque" and motor characteristic

To fabricate a machine, design by using the generated motor torque (rated torque) as a reference.

The rated motor torque can be calculated from the rated speed at 50Hz or 60Hz. However, the rated torque is 1.2 times larger at 50Hz compared with the torque at 60Hz, and the current is also larger by the same rate. For this reason, the permissible value for a continuous operation (torque coefficient) of the motor differs, so the two data values, one for "reference torque of 50Hz" and another for "reference torque of 60Hz", are available.

- When designing a machine, select appropriate data values according to the reference torque (regardless of the power supply frequency)
 For the maximum starting torque coefficient and the acceleration/deceleration torque coefficient, also select appropriate data values in the same manner.
- Take caution when driving a pre-installed machine (designed for the commercial power supply) with an inverter.

(2) Assessment for the continuous operation

If the load torque exceeds the continuous operation torque range of the motor, a continuous operation cannot be performed.

Continuous operation torque of the motor $T_{MC} = T_{M}$	$1 \times \alpha_{\rm C} > \text{Load torque } T_{\rm LR} \qquad \cdots (3.4-1)$
OR	T _M : Rated motor torque [N· m]
Continuous operation torque coefficient of the mote	or $\alpha_{\rm C}$ > Load torque ratio TF = $\frac{T_{\rm LR}}{T_{\rm M}}$ (3.4-2)

In the desired operation range (running frequency range) as shown in the figure below, a continuous operation cannot be performed in the area where the load torque ratio exceeds the continuous operation torque coefficient (shaded area).

Continuous operation torque characteristic is determined by the "continuous operation torque coefficient" in TECHNICAL NOTE No.30.

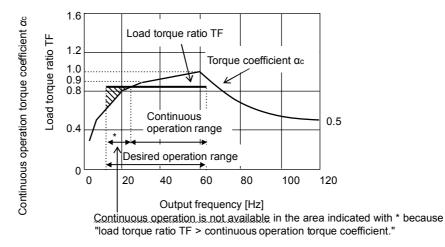


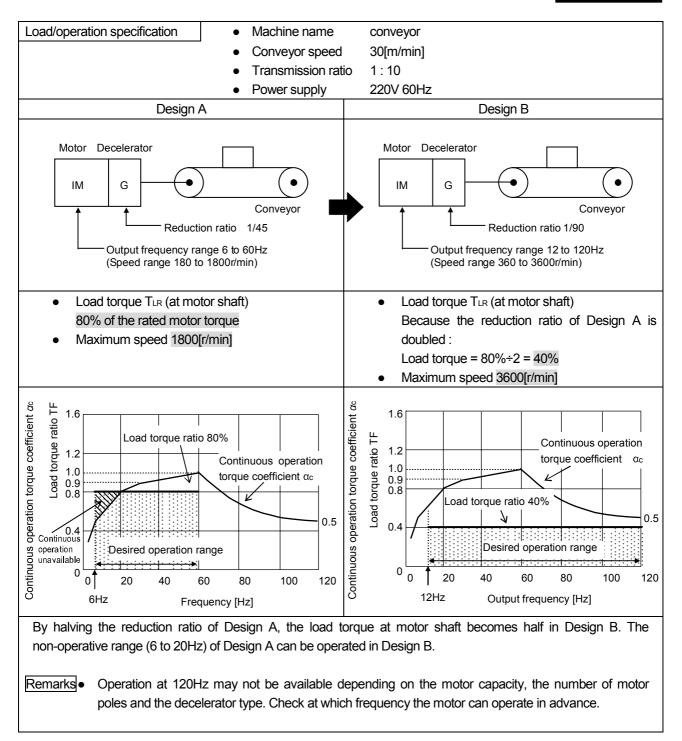
Figure 3.2 Assessment for the continuous operation range

(3) Countermeasures to take when a continuous operation is unavailable

1) Use a larger-capacity inverter and a larger-capacity motor.

Temperature characteristic of the motor can be improved by using a larger-capacity motor.

- 2) Temperature characteristic during low-speed operation may be improved by using (Advanced) magnetic flux vector control (or General-purpose magnetic flux control). Refer to the continuous operation torque coefficient in TECHNICAL NOTE No.30 [DATA].
- Use an inverter-dedicated motor.
 The temperature characteristic during low-speed operation is better with a dedicated motor than with a standard motor.
- 4) Set a higher reduction ratio.


Also consider the following countermeasure when a continuous operation is unavailable in certain operation range.

This method is useful when a larger-capacity motor cannot be used.

The load torque must be within the continuous operation torque range. The load torque at the motor shaft can be reduced by changing the deceleration mechanism (reduction ratio) mechanically.

《Example of changing the reduction gear of the machine as a countermeasure》

CONTINUOUS OPERATION

3.5 Assessment for the acceleration

Calculate the shortest acceleration time that is required to accelerate to the specified frequency.

Shortest acceleration time is the acceleration time exhibited with the maximum acceleration capability without activating the inverter protection circuit.

(1) Limit for the acceleration time

- When no operational limit exists for the acceleration time For an actual operation, set the acceleration time longer than the shortest acceleration time by taking a margin. The longer the acceleration time is, the less stress is applied to the motor and inverter.
- 2) When a limit exists for the acceleration time When the desired operation cannot be performed with the obtained value, even shorter acceleration time is required. Take the following measures.

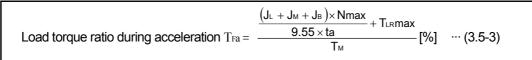
Assessment for the acceleration

- Change V/F control \Rightarrow (Advanced) magnetic vector flux control.
- Generated torque of the motor (short-time torque) increases, and the acceleration torque also increases.
 Use a larger-capacity inverter.
- The acceleration torque increases like the above method.
- Use a larger-capacity inverter and a larger-capacity motor. The acceleration torque increases most by this method.

(2) Calculation of the shortest acceleration time

	$\frac{J_{M} + J_{B} \times Nmax}{T_{M} \times \alpha_{a} - T_{LR}max} [s] \qquad \cdots (3.5-1)$
J∟ Jм Jв Nmax Tм αa TLRmax	 : Load moment of inertia (at motor shaft) [kg·m²] : Motor moment of inertia [kg·m²] : Brake moment of inertia (at motor shaft) [kg·m²] : Maximum motor speed [r/min] : Rated motor torque [N·m] : Linear acceleration torque coefficient : Maximum load torque [N·m]

(Note) For the linear acceleration torque coefficient α_a , refer to maximum short-time torque/torque type data in TECHNICAL NOTE No.30.


(3) Assessment for the acceleration

Acceleration is available if the desired acceleration time tais longer than the shortest acceleration time tas.

tas < ta ...(3.5-2)

(4) Consideration for the shortest acceleration time

If the current, which activates the inverter's stall prevention function (150% of the rated inverter current), flows for a long time during acceleration, the motor and inverter temperatures exceed the permissible value.

1) When the shortest acceleration time is within 60s and the load ratio during acceleration TFa is within 150% (within 120% for FR-F500)

The motor and inverter temperatures are within the permissible value, so the acceleration is available.

2) When the shortest acceleration time exceeds 60s or the load ratio during acceleration TFa is 150% or higher (120% or higher for FR-F500)

The motor and inverter temperatures may exceed the permissible value.

Refer to the temperature calculations of the motor and inverter in Chapter 4.8 (Cyclic operation), and consider a heat treatment for the acceleration.

3.6 Assessment for the deceleration

Calculate the shortest deceleration time that is required to stop from the specified frequency.

Shortest deceleration time is the deceleration time exhibited with the maximum deceleration capability without activating the inverter protection circuit.

(1) Limit for the deceleration time

1) When no operational limit exists for the deceleration time

For an actual operation, set the deceleration time longer than the shortest deceleration time by taking a margin. The longer the deceleration time is, the less stress is applied to the motor and inverter.

2) When a limit exists for the deceleration time

When the desired operation cannot be performed with the obtained value, even shorter deceleration time is required. Take the following measures.

Assessment for the deceleration

- Use a larger-capacity inverter.
 - If an inverter with a built-in brake resistor is being used, using a larger-capacity inverter increases the deceleration torque.

If an inverter without a built-in brake resistor is been used, using a larger-capacity inverter does not increase the deceleration capability.

- Use a larger-capacity inverter and a larger-capacity motor.
- Use a braking option (brake resistor or brake unit) or a power regeneration converter.

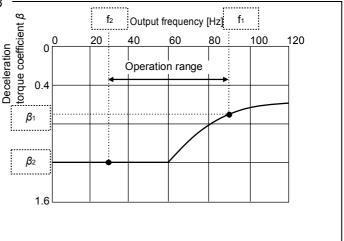
(2) Calculation of the shortest deceleration time

The shortest deceleration time can be calculated by the following formula.

Shortest deceleration time	$tds = \frac{\left(J_{L} + J_{M} + J_{B}\right) \times Nmax}{9.55 \left(T_{M} \times \beta + T_{LR}min\right)}$	[S]	··· (3.6-1)
J∟ Јм Јв Nmax Тм	: Load moment of inertia (at : Motor moment of inertia [k : Brake moment of inertia (a : Maximum motor speed [r/ : Rated motor torgue [N·m]	at motor	

- : Rated motor torque [N·m]
 - : Deceleration torque coefficient
- : Maximum load torque [N·m] TLRMIN
- (Note) For the deceleration torque coefficient β , refer to Chapter 3 Regeneration performance data in **TECHNICAL NOTE No.30.**

How to obtain the deceleration torgue coefficient β


ß

To calculate the shortest deceleration time using the deceleration torque characteristic (see the right figure), use the lowest deceleration torque coefficient within the output frequency range for the operation.

For the deceleration torque coefficient β for the calculation, use β 1 because it is smaller than β 2 in the right figure.

(Note) The output torque of the motor during deceleration can be calculated by the following formula:

"output torque of the motor $T_M \times \beta$ "

(3) Assessment for the deceleration

Deceleration is available if the desired deceleration time td is longer than the shortest deceleration time tds.

tds < td ... (3.6-2)

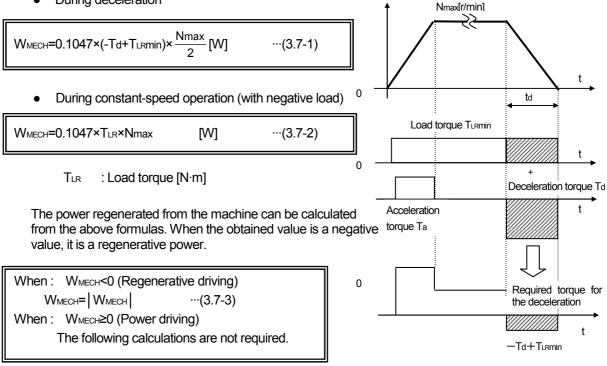
- Points for the deceleration torque -

To perform operation, set the deceleration time longer than the shortest deceleration time described in the former section.

The following formula shows the relationship between the deceleration time and the deceleration torque. As the deceleration time increases, the required torque for the deceleration decreases.

Deceleration torque $T_d = \frac{(J_L + J_M + J_B) \times Nmax}{9.55 \times td}$ [N·m] ... (3.6-3)

td: Deceleration time [s]



3.7 Regenerative power calculation

Regenerative power is generated during deceleration and an operation with a negative load. If the regenerative power to the inverter is not consumed enough, the protection circuit of the inverter is activated. Calculate how much regenerative power can be consumed by the inverter based on the regenerative power amount. The following assessment is not required if the deceleration is confirmed to be available by the capacitor regeneration.

(1) Regenerative power amount

- 1) Power regenerated from the machine
 - During deceleration

Example: Deceleration from 1800r/min to stop with the deceleration torque Td=20 [N·m] and the minimum load torque TLRmin=4 [N·m]

$$W_{MECH} = 0.1047 \times (-20+4) \times \frac{1800}{2}$$
 [W]

= -1508 [W]

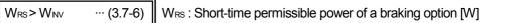
WMECH<0, so it is the regenerative driving. Use the following formula for the following calculations.

WMECH= | WMECH | = | -1508 | =1508 [W]

2) Motor consumed power

W_M =k×P_{LR} [W] ···(3.7-4)

- k : Conversion coefficient (calculate from the diagram in 3.6 Power consumed by the motor (Chapter 3 Regeneration performance data) in TECHNICAL NOTE No.30)
- PLR : Required power [kW]


3) Power regenerated to the inverter

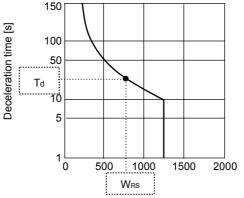
$$W_{INV} = W_{MECH} - W_{M}$$
 [W] ...(3.7-5)

CONTINUOUS OPERATION

(2) Assessment for the consumable regenerative power

- 1) When the regenerative power W_{INV} is a negative value, the operation is performed in power driving like in acceleration (not in regenerative driving), so this assessment is not required.
- 2) Select a braking option (like a brake resistor), which has higher permissible power than the power regenerated to the inverter W_{INV}.
 - During deceleration

• During continuous operation (continuous operation with a negative load such as an unwinding operation of a winding machine)


 $W_{RC} > W_{INV} \qquad \cdots (3.7-7)$ W_{RC} : Continuous operation permissible power of a braking option [W]

(Note) For the continuous operation permissible power of a braking option, refer to Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30.

How to obtain the short-time permissible power W_{RS} and the continuous operation permissible power W_{RC}

- Short-time permissible power W_{RS} Selection procedure
 - 1. Calculate the short-time permissible power of the braking option by referring to "Connectable braking option" (Chapter 3 Regeneration performance data) in TECHNICAL NOTE No.30.
 - Calculate the short-time permissible power of the braking option by referring to "Permissible power" (Chapter 3 Regeneration performance data) in TECHNICAL NOTE No.30.
 Calculate the short-time permissible power from the cross point between the deceleration time to

(used time td) line and the characteristic line.

Short-time permissible power for an activation [W]

- Continuous operation permissible power W_{RC} Selection procedure
 - 1. Select a braking option by referring to "Connectable braking option" (Chapter 3 Regeneration performance data) in TECHNICAL NOTE No.30.
 - 2. Calculate the continuous operation permissible power of the braking option by referring to "Permissible power" (Chapter 3 Regeneration performance data) in TECHNICAL NOTE No.30.

CYCLIC OPERATION

CHAPTER 4 CYCLIC OPERATION

4.1 Calculation of load-operating power and load torque

Load characteristics (power, operation pattern, etc.) are required for the calculation. (Refer to Table 2.1.) Especially if the power value is unclear, correct assessment cannot be performed. Follow the following procedure for the calculation.

(1) Required power PLR

Size of a load differs by the machine (load type), but it can be roughly categorized into the following: "constant-torque load" represented by a conveyor, "variable-torque load" such as a fan and pump, and "constant-output load" such as a winding machine.

For the details of required power calculation, refer to TECHNICAL NOTE No.30 (Appendix)

1) When the load torque is known

$$P_{LR} = \frac{T_{LR} \times Nmax}{9550}$$
 [kW] (4.1-1)

 TLR
 : Load torque at motor shaft [N·m]

 Nmax
 : Maximum motor speed [r/min]

2) When calculating the value from the characteristics at machine side

Example: Conveyor

$$P_{LR} = \frac{\mu \times W \times V_{max}}{6120 \times \eta} \qquad [kW] \qquad \cdots (4.1-2)$$

: Friction coefficient

: Load mass [kg]

Vmax : Maximum travel speed [m/min]

: Machine efficiency

3) When calculating the value from the motor current (when operating the pre-installed machine with the commercial power supply)

μ W

ŋ

The required power can be calculated with the measured current size of the motor.

It can be calculated based on the test report of the connected motor.

(2) Load torque at motor shaft TLR

When the load torque is unknown, the value can be calculated with the required power P_{LR} in the following formula.

$$T_{LR} = \frac{9550 \times P_{LR}}{Nmax}$$
 [N·m] ... (4.1-3)

(Note) The motor speed N_{max} is the speed at the required power P_{LR} (travel speed is V_{max}). (It is not the rated motor speed.)

(Information) To calculate the value from the characteristics at machine side

$$T_{LR} = \frac{\mu \times 9.8 \times W \times V_{max}}{2\pi N_{max} \times \eta} \qquad [N \cdot m] \qquad \cdots (4.1-4)$$

Points for the minimum load torque

In some cases, the load torque in the regenerative-drive area is calculated with the machine efficiency $\eta = 1$ considering the safety, and the obtained torque from this calculation is used as the minimum load torque TLRmin.

(3) Load moment of inertia at motor shaft

Calculate this value in the same way as the load torque by referring to TECHNICAL NOTE No.30 (Appendix).

1) When calculating the value from the characteristics at machine side

$$J_{L} = W \times \left(\frac{V_{max}}{2\pi Nmax}\right)^{2} \qquad [kg \cdot m^{2}] \qquad \cdots (4.1-5)$$

2) When the moment at inertia of the load shaft is known

$$J_{L}= J_{LO} \times \left(\frac{N_{LO}}{N_{Max}}\right)^{2} \qquad [kg \cdot m^{2}] \qquad \cdots (4.1-6)$$

- : Moment of inertia at the load-driving shaft [kg·m²]
- : Speed at the load-driving shaft [r/min]
- Nmax : Maximum motor speed [r/min] (Speed at Vmax)

4.2 Selection of motor and inverter capacities (tentative)

(1) Selection of the motor capacity (tentative)

Select a motor capacity (tentative) based on the required power obtained in the last section. <u>Select a</u> motor capacity that is equal to or higher than the required power in typical operations.

Jlo

NLO

Motor capacity	$P_{M} \ge Required power P_{LR} \times k_{P} [kW]$	··· (4.2-1)
k₽	: Margin coefficient for tentative motor	selection 1.0 to 2.0

Example: When the required power $P_{LR}=2.8$ [kW] and $k_p=1.0$

Tentatively select the motor capacity 3.7kW, which is the closest to the required power.

Тм

Рм

Nм

Check if the tentatively selected motor capacity satisfies the following condition. Check if the load torque is within the rated motor torque. If the value does not satisfy the formula, try a larger-capacity motor, and re-evaluate.

$$T_{M} = \frac{9550 \times P_{M}}{N_{M}} \ge T_{LR} \qquad [N \cdot m] \qquad \cdots (4.2-2)$$

- : Rated motor torque [N·m]
- : Rated motor output [kW]

: Rated motor speed [r/min] (Use the synchronous speed for the calculation.) - Points for motor capacity selection

Example: Different motor speeds (1600r/min and 1200r/min) produce different load torques although the required power (2.8kW) is the same. Because of this, different motor capacity must be selected.

When the motor capacity 3.7kW is selected according to the required power 2.8kW:

Rated motor torque $T_M = \frac{9550 \times 3.7}{1800} = 19.6$ [N·m]

• When the required torque is 2.8kW, and the motor speed is 1200r/min:

Load torque $T_{LR} = \frac{9550 \times 2.8}{1200} = 22.3$ [N·m]

TM=19.6<TLR=22.3

Even though the load torque T_{LR} is larger than the rated motor torque T_M and the required power is 2.8kW, the 3.7kW motor cannot be used. In this case, select a 5.5kW motor.

• When the required torque is 2.8kW, and the motor speed is 1600r/min:

Load torque T_{LR} = $\frac{9550 \times 2.8}{1600}$ = 16.7 [N·m]

Тм=19.6>Тьк=16.7

Because the load torque TLR is within the rated motor torque TM, a 3.7kW motor can be used.

(2) Selection of the inverter capacity (tentative)

Select the inverter capacity (tentative) based on the motor capacity (tentative) obtained in the last section. When using a motor with six poles or more, check that the rated inverter current is equal to or higher than the rated motor current.

Selected inverter capacity (tentative) $P_{INV} \ge Rated motor output P_M [kW] \cdots (4.3-3)$

If the acceleration torque is required to be 1.4 times or more of the standard load torque, tentatively select the inverter capacity that is one rank higher than the motor capacity.

- Points for inverter capacity selection -

Choice of an inverter model (series) affects the generated torque, the continuous operation range, and the braking efficiency of the motor. Consider this point when selecting an inverter model.

- Generated torque of the motor (maximum short-time torque and starting torque)
 The generated torque under (Advanced) magnetic flux vector control is larger than the torque under
- conventional V/F control.
 Continuous operation range (the running frequency range where the 100% torque is generated) The continuous operation range widens when using a 1.5kW motor or less under (Advanced) magnetic flux vector control.
- Braking efficiency (built-in brake resistor) The inverter with a built-in brake resistor is suitable for outputting a brake torque and consuming the regenerative power during deceleration.

4.3 Assessment for the start

CYCLIC OPERATION

To start running a machine (load), the starting torque of the motor must be higher than the starting torque of the load.

Find out the starting torque of the motor to determine if the machine can be started. The following conditions must be satisfied.

(1) Starting torque of the motor

The starting torque of the motor during inverter operation is smaller than the torque during commercial power supply operation.

The starting torque of the motor is affected by the following conditions.

Inverter capacity

The starting torque is larger when a larger-capacity inverter is connected to the motor. However, there is a limit to the connectable inverter capacity.

- Control method of the inverter
- The starting torque under (Advanced) magnetic flux vector control is larger than the torque under V/F control.Torque boost
 - Under V/F control, the higher the torque boost setting is, the larger the starting torque becomes. (Starting torque.....high torque boost setting>standard torque boost setting)

The maximum starting torque of the motor can be calculated by the following formula.

 $T_{MS} = T_M \times \alpha_S \times \delta \qquad [N \cdot m] \qquad \cdots (4.3-1)$

T_{MS} : Starting torque [N·m]

as : Maximum starting torque coefficient...Select according to TECHNICAL NOTE No.30

T∟s W

μs

δ : Hot coefficient...Select according to TECHNICAL NOTE No.30

The load torque at start can be calculated by the following formula.

$$T_{LS} = \frac{\mu_{S} \times 9.8 \times W \times V_{max}}{2\pi N_{max} \times \eta} \qquad [N \cdot m] \qquad \cdots (4.3-2)$$

- : Load torque at start [N·m]
- : Load mass [kg]
- : Maximum friction coefficient
- Vmax : Maximum travel speed [m/min]
- Nmax : Maximum motor speed [r/min]

(2) Assessment for the start

 η : Machine efficiency

The machine can be started when the following condition is satisfied.

Maximum starting torque of motor T_{MS} > Load torque at start T_{LS} ... (4.3-3)

- Example : Load torque at start TLS = 11 [N·m]
 - Motor capacity of 3.7kW 4P(T_M=19.6 [N·m])
 - FR-A520-3.7K inverter (V/F control with standard torque boost setting)

Starting torque of the motor $T_{MS} = T_M \times \alpha_S \times \delta$

- = $19.6 \times 0.8 \times 0.85 = 13.3 > T_{LS} = 11 \Rightarrow$ The machine can be started α s : Maximum starting torque coefficient 0.8 (Power driving performance data in TECHNICAL NOTE No.30)
- δ : Hot coefficient 0.85 (Outline of Technical Note No.30 [DATA] in TECHNICAL NOTE No.30)

Operation may not be performed at the frequency equal to or lower than the starting frequency.

⁽Note) The output frequency (starting frequency) is determined for the starting torque coefficient of motor αs. When the desired minimum operation frequency is within the starting frequency, some limits are applied to the operation range.

(3) Countermeasures to take when the start is unavailable

1) Change V/F control \Rightarrow (Advanced) magnetic flux vector control.

2) Use a larger-capacity inverter.

3) Use a larger-capacity inverter and a larger-capacity motor.

4.4 Assessment for the low-speed and high-speed operations

(1) Assessment for the low-speed operation

The low-speed operation is available when the output torque of the motor (maximum short-time torque) is larger than the load torque during the low-speed operation of less than 20Hz.

 $T_{M} \times \alpha_{M} \times \delta > T_{LRMAX} \qquad \cdots (4.4-1)$

am : Maximum short-time torque coefficient...Select according to TECHNICAL NOTE No.30.

 δ : Hot coefficient...Select according to TECHNICAL NOTE No.30.

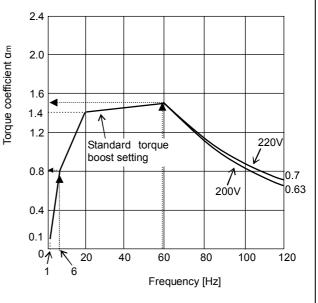
TLRmax : Maximum load torque [N·m]

(2) Assessment for the high-speed operation

The high-speed operation is available when the output torque of the motor (maximum short-time torque) is larger than the load torque during the high-speed operation of 20Hz or higher.

Maximum frequency is limited in some motor capacities (frame number). Check TECHNICAL NOTE No.30 [DATA].

 $T_M \times \alpha_M > T_{LRMax}$... (4.4-2)


- How to obtain the maximum short-time torque coefficient αm

Obtain the maximum short-time torque coefficient α_m by referring to the maximum short-time torque characteristic (shown right) in Chapter 2 Power driving performance data in TECHNICAL NOTE No.30.

Maximum short-time torque α_m changes as shown in the figure on the right.

When a low-speed operation is performed at 6Hz, α m=0.8

When a high-speed operation is performed at 60Hz, $\alpha m\text{=}1.5$

CYCLIC OPERATION

4.5 Assessment for the acceleration (calculation of the total acceleration torque)

Figure 4.1 shows the relationship among time, speed and torque. Assess if the acceleration to the maximum speed Nmax can be performed within the specified acceleration time ta.

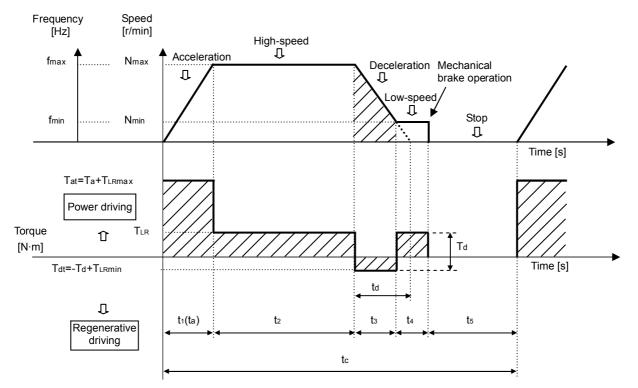
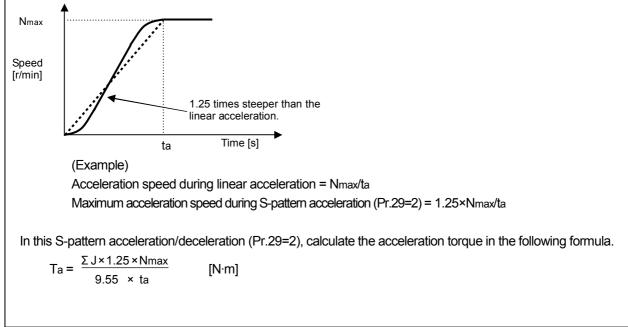


Figure 4.1 Relationship among acceleration time, speed and torque

(1) Acceleration torque Ta


Calculate the acceleration torque Ta in the following formula.

$$\begin{array}{c|c} T_{a} = \frac{\sum J \times N_{max}}{9.55 \times t_{a}} \quad [N \cdot m] \quad \cdots (4.5 \text{-} 1) \end{array} \end{array} \begin{array}{c} \sum J \quad & : \text{ Total moment of inertia at motor shaft} \\ & = J_{M} \quad + \quad J_{B} \quad + \quad J_{L} \\ (motor) \quad (brake) \quad (load) \end{array}$$

- Nmax : Maximum motor speed [r/min]
- TLRmax : Maximum load torque [N·m]

Acceleration/deceleration torque during S-pattern acceleration/deceleration (Pr.29=2)

When the S-pattern acceleration/deceleration is selected (Pr.29=2), the slope during S-pattern acceleration/ deceleration is steeper than the slope during linear acceleration/deceleration in some area. Use the steepest area for the calculation.

(Information)

When the time between the stop status and the maximum speed N_{max} (maximum travel speed V_{max}) is indicated by the acceleration speed A_{cc} , the A_{cc} value can be converted to the acceleration time ta by the following formula.

Acc

ta =
$$\frac{Vmax}{60 \times Acc}$$
 [S]

Vmax : Maximum travel speed [m/min]

: Acceleration speed [m/s²] Acceleration speed is sometimes expressed in gravitational acceleration G.

In that case, refer to the following equation. (Example) $1G = 9.8 \text{ [m/s}^2\text{]}$

(2) Total acceleration torque Tat

Total of the acceleration torque T_a and the load torque T_{LR} is required for the acceleration. This value is called the total acceleration torque T_{at} .

To assess cautiously, use the maximum load torque TLRmax as the load torque for the calculation.

Tat = Ta + T_{LR}max [N·m] ···(4.5-2)

Tat : Total acceleration torque [N·m]

 $T_{\text{LRmax}} : Maximum \text{ load torque at motor shaft } [N \cdot m]$

(3) Assessment for the acceleration

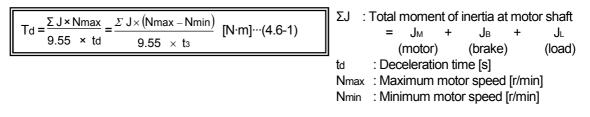
Acceleration is available when the output torque of the tentatively selected motor is larger than the total acceleration torque Tat.

```
Output torque of the motorRequired torque for the accelerationT_M \times \alpha_a>T_{at} (=T_a + T_{LRMax})...(4.5-3)
```

 α_a : Linear acceleration torque coefficient...Select according to TECHNICAL NOTE No.30.

If the above condition is not satisfied, take the following measures to output larger torque from the motor.

- 1) If V/F control has been used, set the torque boost setting higher. Alternatively, use (Advanced) magnetic flux vector control.
- 2) Use an inverter capacity that is one rank higher than the motor capacity.
- 3) Use one-rank-higher motor and inverter capacities.


CYCLIC OPERATION

4.6 Assessment for the deceleration (calculation of the deceleration torque)

By referring to Figure 4.1, assess if the deceleration from the maximum speed to "0" can be performed within the deceleration time td.

(1) Deceleration torque Td

Calculate the deceleration torque Td in the following formula.

(Information)

When the time between the maximum speed Nmax (maximum travel speed Vmax) and the stop is indicated by the acceleration speed Acc, the Acc value can be converted to deceleration time to by the following formula.

 $t_{d} = \frac{V_{max}}{60 \times A_{cc}} [s]$ V_{max} A_{cc} V_{max} A_{cc} A_{cc} $A_{cc} = C_{cc} [m/min]$ $A_{cc} = C_{cc} = C_{cc}$

(2) Total deceleration torque Tdt

The difference between the deceleration torque td and the load torque T_{LR} is required for the deceleration. This value is called the total deceleration torque T_{dt} .

To assess cautiously, use the minimum load torque T_{LRmin} as the load torque for the calculation. To assess the worst case, use T_{LRmin} =0.

 $\begin{array}{ll} T_{dt} = -T_{d} + T_{LRmin} & [N \cdot m] & \cdots (4.6-2) \\ \cdot When \ T_{dt} < 0 \rightarrow Assess \ for \ the \ deceleration \ (4.6-3) \ by \ assuming \ T_{dt} = \left| \ T_{dt} \right| . \\ \cdot When \ T_{dt} \ge 0 \rightarrow Assessment \ for \ the \ deceleration \ and \ calculation \ of \ regenerative \ power \ are \ not \ required. \end{array}$

Tdt : Total deceleration torque [N·m]

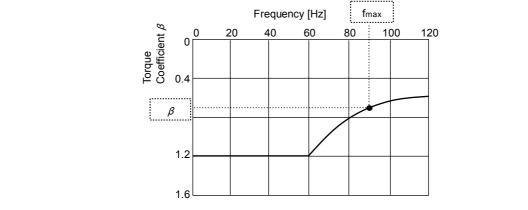
TLRmin : Maximum load torque at motor shaft [N·m]

(3) Assessment for the deceleration

Deceleration is available when the output torque of the tentatively selected motor is larger than the total deceleration torque $T_{dt.}$

Output torque of the motor		Required torque for the deceleration	
TM×β	>	Tdt(= -Td + TLRmin)	(4.6-3)

 β :Deceleration torque coefficient...Select according to TECHNICAL NOTE No.30.


If the above condition is not satisfied, take the following measures to output larger torque from the motor.

1) Use an external brake resistor or a brake unit in combination.

2) Use a power regeneration converter.

How to obtain the deceleration torque coefficient β

- (1) Refer to Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30. Select a braking option to be additionally used that satisfies the following condition: The value in first two digits of torque type (indicating the maximum torque %) is equal to or higher than the required brake torque.
- (2) Calculate the torque coefficient when using a braking option, which has been selected according to the brake torque data in Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30, in combination.

4.7 Regenerative power calculation (temperature calculation of the braking option)

Assume the operation pattern of Figure 4.2. The power regenerated to the inverter must be consumed by the braking option during short-time operation and throughout the operation. The following assessment is not required if $-Td + T_{LRMin} > 0$. The following assessment is also not required if the deceleration is confirmed to be available by the capacitor regeneration.

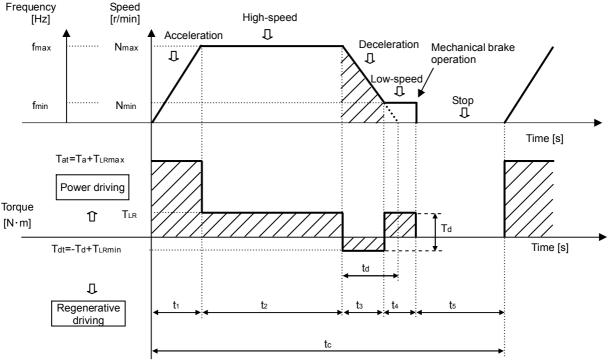


Figure 4.2 Operation pattern

(1) Check for the short-time permissible power

Calculate the power regenerated from the load W_{MECH} . Focus on the deceleration part in Figure 4.2. The power regenerated from the machine W_{MECH} can be calculated by the following formula.

$$W_{MECH} = 0.1047 \times (-T_d + T_{LRmin}) \times \frac{Nmax + Nmin}{2}$$
 [W] ...(4.7-1)

The power regenerated from the machine can be calculated from the above formula. When the obtained value is a negative value, it is a regenerative power.

When WMECH<0 (Regenerative driving)				
WMECH= WMECH				
When WMECH≥0 (Power driving)				
When WMECH<0 (Regenerative driving) WMECH= WMECH When WMECH≥0 (Power driving) The following calculations are not required.				

Some of this regenerative power is consumed by the motor. The following formula shows how much power is consumed by the motor (W_M).

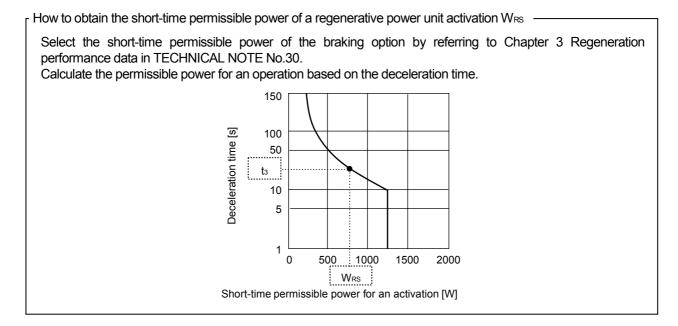
W _M =(k ₁ -k ₂)× P _{LR} [W]	(4.7-2)
--	---------

PLR : Required power for the load

k1 : Conversion coefficient at the maximum running frequency f max

k2 : Conversion coefficient at the minimum running frequency f min

For k_1 and k_2 , refer to Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30. The following formula shows how much power is regenerated to the inverter (W_{INV}).


 $W_{INV} = (Power consumed from the load) - (Power consumed by the motor)$

```
= W<sub>MECH</sub> - W<sub>M</sub> [W] ···(4.7-3)
```


Check if the short-time permissible power of the braking option (W_{RS}) is equal to or larger than the power regenerated to the inverter (W_{INV}).

W_{RS} > W_{INV} ...(4.7-4)

(2) Check for the average continuous regenerative power

Check that the average regenerative power is within the continuous operation permissible power of the braking option throughout a cycle (W_{RS}).

$$W_{RC} > W_{INV} \times \frac{t_3}{t_c} \qquad \cdots (4.7-5)$$

For WRC, refer to TECHNICAL NOTE No.30.

Characteristic and comparison of the built-in/external brake resistor, brake unit, ______ and power regeneration converter

(1) Inverter built-in brake resistor

100% or higher brake torque can be obtained, but the brake duty (%ED) is low (3% or less). This is available for 7.5kW or less.

(2) External brake resistor

Same size of brake torque can be obtained as the built-in brake resistor. Choose one according to the required brake duty (%ED).

External brake resistor model	%ED
MRS series	3
MYS series	6
ABR series	10

(3) Brake unit (FR-BU type and FR-BR type used in combination)

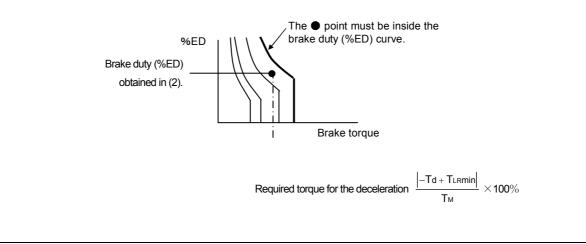
Obtain larger brake torque by using the brake unit capacity (and the inverter capacity), which is higher than the motor capacity. 10% or higher brake duty (%ED) is available.

(4) Power regeneration common converter (FR-CV type)

Same as for the brake unit. Continuous operation with 100% torque is also available.

Simple selection of a brake unit or a power regeneration converter

Simple selection can be made by referring to the characteristic diagram of the permissible brake duty (%ED). (For the %ED characteristic diagram, refer to Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30.)


(1) Calculate the required torque for the deceleration. Select the braking option, which has larger brake torque than the calculated required torque by referring to Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30.

Calculate the required torque for the deceleration by -Td + TLRmin.

(2) Calculate the brake duty (%ED). In Figure 4.2

%ED =
$$\frac{t_3}{t_c} \times 100$$
 [%]

(3) Check that the brake duty is within the permissible brake duty (%ED), which is selected earlier, by referring to the characteristic diagram (%ED) in Chapter 3.5 Permissible brake duty (%ED)(Chapter 3 Regeneration performance data) in TECHNICAL NOTE No.30.

4.8 Temperature calculation of the motor and inverter

CYCLIC OPERATION

(1) Temperature assessment by the equivalent current of the motor torque

Calculate the current in each operation block of one cycle. Check that the root mean square of the currents, which is the average current throughout the cycle, is within the rated current of the motor.

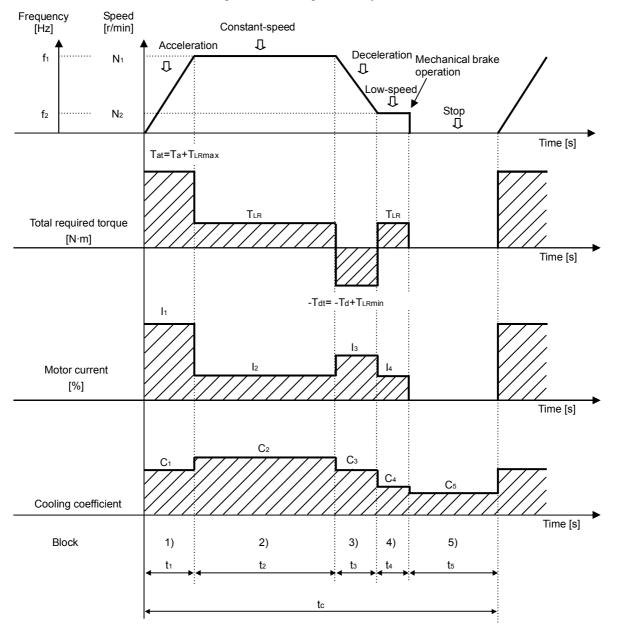


Figure 4.3. Operation pattern

(2) How to calculate the motor current l_1 , l_2 ...ln [%] and the cooling coefficient C₁, C₂...C_n

Calculate the total torque in each operation block by the following procedure. After calculating the load torque ratio, calculate the ratio of the motor current (%) to the load torque ratio by referring to Chapter 4 Motor and brake characteristics in TECHNICAL NOTE No.30.

Operation	Time period in	Total torque in the operation block [N·m]
block	the block [s]	
1)	t₁	T1=Ta + TLRmax
2)	t2	T2=TLR
3)	t₃	T₃=-Td + T∟Rmin
4)	t4	T4=TLR
5)	t₅	T ₅ = 0 (Block for stop status)

1) Calculate the total torque in each operation block by referring to the table below

2) Calculate the load torque ratio

Load torque ratio TFn = $\frac{\text{Total torque in each operation block Tn}}{\text{Rated motor torque Tm}} \times 100$ [%] ...(4.8-1)

The following formula shows how the current-equivalent load torque ratio TF_1 is calculated within the rated output range of the motor (the range equal to or higher than the base frequency) (example : 60 to 120Hz).

$\begin{array}{ c c c c c } \hline Current-equivalent & Total torque in each \\ load torque ratio in the range equal to or higher than the base frequency \\ \hline TF_I = \frac{Operation block Tn}{Rated motor torque T_M} \times \frac{Running frequence}{Base frequency} \end{array}$	× 100	[%](4.8-2)
---	-------	------------

3) How to calculate the coefficient C1, C2...Cn

Calculate the coefficient by referring to Chapter 4 Motor and brake characteristics in TECHNICAL NOTE No.30.

4) How to calculate the motor current

Calculate the ratio of the motor current (%) to the load torque ratio TF_n (current-equivalent load torque ratio TF_n), which is obtained in 2) by referring to Chapter 4 Motor and brake characteristics in TECHNICAL NOTE No.30.

When the maximum frequency is higher than the base frequency during acceleration/deceleration, multiply the obtained motor current by the current compensation coefficient (k60 or k50). (Refer to Chapter 4 Motor and brake characteristics in TECHNICAL NOTE No.30.)

(Note) The current is higher during Cyclic operation under vector control. Multiply the above-obtained value by 1.2 times, and use that value as the motor current In.

- When the average current is around 100% -

When driving a standard motor by an inverter, higher motor current (about 1.1 times) is required to output the same amount of torque compared with when driving by the commercial power supply,

When the equivalent current of the motor torque is 100%, 110% current flows during inverter operation. Little margin for the temperature rise is left when driving a standard motor. Thoroughly consider the load condition and operation duty.

(3) Temperature calculation of the motor

МС

If the following condition is satisfied in Figure 4.3, the use of motor is available regarding the temperature.

 $I_{MC} = \sqrt{\frac{\Sigma(\ln^2 \times t_n)}{\Sigma(C_n \times t_n)}} < 100 \,[\%] \,(\text{Note}) \qquad \cdots (4.8-3)$

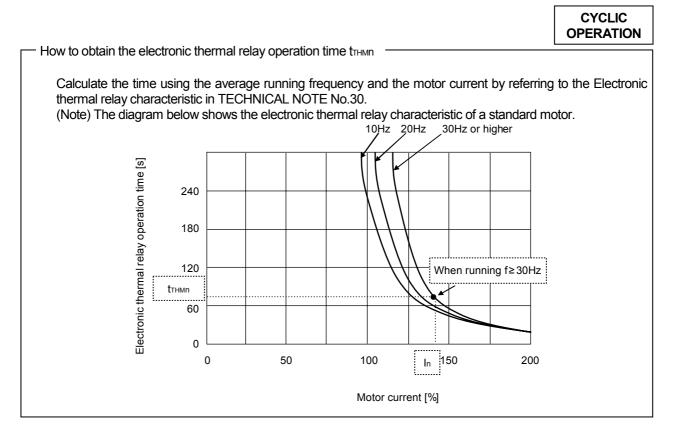
•	Equivalent current of motor	torque considerina	the coolina	coefficient [%]

 $I_1, I_2, ... In \qquad \qquad : \mbox{ Motor current in an operation block } t_1, t_2 ... tn \end{tabular} \label{eq:I1}$

C1, C2, ...Cn : Cooling coefficient for the frequency f1 to fn in an operation block t1, t2...tn

(Information) Calculation table for motor temperature							
Operation block	Time period in the block [s]	Total torque in the operation block [N·m]	Load torque ratio [%]	Cooling coefficient	Motor current [%]	In ² ×tn	Cn×tn
1)	t1=	$T_1 =$	TF ₁ =	$C_1 =$	I1=	$I_1^2 \times t_1 =$	$C_1 \times t_1 =$
2)	t ₂ =	T ₂ =	TF ₂ =	C ₂ =	$ _2 =$	$l_2^2 \times t_2 =$	$C_2 \times t_2 =$
3)	t ₃ =	T₃=	TF3=	C3=	$ _{3} =$	$I_3^2 \times t_3 =$	$C_3 \times t_3 =$
4)	t4=	T4=	TF ₄ =	C4=	$I_4 =$	$I_4^2 \times t_4 =$	$C_4 \times t_4 =$
5)	t5=	T₅=	TF₅=	C5=	I 5=	$I_5^2 \times t_5 =$	$C_5 \times t_5 =$

(4) Electronic thermal relay check


Check that the motor does not overheat even if the equivalent current of the motor torque I_{MC} drops to 100% or less in the operation blocks during acceleration and constant-speed operation.

1) Calculate the ratio of the electronic thermal relay operation time to the load torque ratio in each operation block

Operation	Time period in	Running	Motor current	Electronic thermal relay
block	the block [s]	frequency	[%]	operation time [s]
1)	t1	$\frac{f_1}{2}$	l ₁	t _{THM1} =
2)	t2	f1	2	tтнм2 =
3)	ta	$\frac{(f_1+f_2)}{2}$	lз	t _{тнмз} =
4)	t4	f2	4	t _{THM4} =
5)	t5	0	I5=0	tтнм5=0

2) In the operation blocks where the motor current I ≥100 [%], check that the time period in the block is shorter than the electronic thermal relay operation time.

tn < t⊤∺mn …(4.8-4)

(5) Transistor protection thermal check

If the current larger than the 150% rated inverter current (120% for the FR-F500 series) flows, the transistor protection of the inverter is activated. To prevent this, check that the protective function does not get activated during the operation.

Load ratio to the rated	In [%]×Rated motor current [A]
inverter current TF _{INV} [%]	Rated inverter current [A]	A] ··· (4.8-5) I₀ [%] : Motor current in each operation block

1) Calculate the load ratio to the rated inverter current in each operation block	ck.
---	-----

Operation block	Motor current [%]	Load ratio to the rated inverter current [%]
1)	I1=	$TF_{INV1} = I_1 \times \frac{Rated motor current}{Rated inverter current} =$
2)	₂ =	$TF_{INV2}=I_{2}\times\frac{Rated motor current}{Rated inverter current} =$
3)	₃ =	TF _{INV3} =I ₃ × Rated motor current Rated inverter current
4)	 4=	TF _{INV4} =I ₄ × Rated motor current Rated inverter current
5)	I₅=0	TF _{INV5} =I ₅ × Rated motor current Rated inverter current

2) Check that the load ratio to the rated inverter current TF_{INV} is within 150% (within 120% for FR-F500) in each operation block.

TF⊪v≤ 150% (Note)	(4.8-6)
-------------------	---------

(Note) It is 120% for the FR-F500 series inverters.

4.9 Stop accuracy

This section describes about the stop operation using a mechanical brake in the speed pattern shown in Figure 4.4.

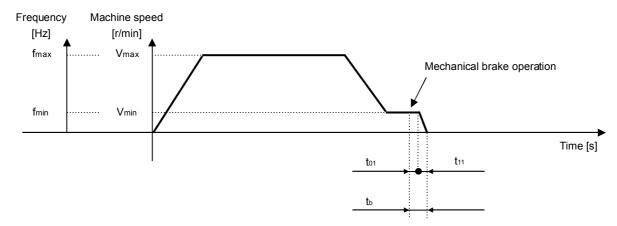


Figure 4.4 Speed pattern of a stop

(1) Characteristics of a mechanical brake

When using a T_B brake, calculate the following constants by referring to Chapter 4.6 Brake characteristic (Chapter 4 Motor and brake characteristics) in TECHNICAL NOTE No.30. (When using other brakes, refer to the manufacturer's characteristic table.)

Rated brake torque: $T_B[N\cdotm]$ Coasting time (cut off in advance): $t_{01}[s]$ Brake moment of inertia: $J_B[kg\cdotm^2]$

(2) Stop accuracy when the machine stops from the low-speed (creep speed) operation

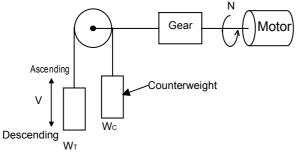
Calculate the time to stop and the distance to stop in the following formulas, and estimate the stop accuracy.

Distance to stop $S = S_{01} + S_{11}$

$$= \left(t_{01} \times \frac{V\min}{60} + t_{11} \times \frac{1}{2} \times \frac{V\min}{60}\right) \times 10^{3}$$
 [mm] ...(4.9-2)

Vmin : The speed immediate before a stop

= The machine speed equivalent to the motor speed Nmin [r/min] (low-speed operation speed = creep speed) [m/min]


Estimated stop accuracy

$$\Delta \varepsilon = \pm \frac{S}{2} \qquad [mm] \quad \dots (4.9-3)$$

CHAPTER 5 LIFT OPERATION

5.1 Calculation of required power and load torque

Calculate the required power for the load PLR and the load torque TLR (at motor shaft) in the following formulas for typical operations.

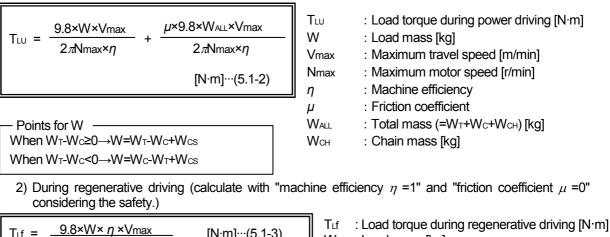
Operation	Condition			
Operation	W⊤-Wc≥0	WT-WC<0		
According	Power	Regenerative		
Ascending	driving	driving		
Descending	Regenerative	Power driving		
Descending	driving			

Figure 5.1 Mechanical structure for Lift operation

(1) Required power PLR

$$P_{LR} = \frac{W \times V_{max}}{6120 \times \eta} \qquad [kW] \qquad \cdots (5.1-1)$$

 For W, use the absolute value of "WT-WC+ WCS" or "Wc-WT+ Wcs", whichever is larger.


Wτ	: Load mass	[kg]
Wc	: Counterweight mass	[kg]
Wcs	: Unbalanced load mass of the chain	[kg]
Vmax	: Maximum ascending speed	[m/min]
η	: Machine efficiency	
Nmax	: Motor speed at the ascending spee	d Vmax [r/min]

What is the unbalanced load mass of the chain Wcs?

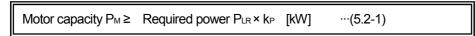
Unbalanced load mass to the right or left due to the mass of chain itself.

(2) Load torque TLR

1) During power driving

T _L f =	<u>9.8×W× ŋ ×Vmax</u> 2 <i>π</i> Nmax	[N·m]···(5.1-3)
Points	s for W	
When	W⊤-Wc ≥0 →W = Wc-W⊺-W	lcs
When	W⊤-Wc< 0 →W=W⊺-Wc-W	/cs

: Load torgue during regenerative driving [N·m] W : Load mass [kg] Vmax : Maximum travel speed [m/min] Nmax : Maximum motor speed [r/min] : Machine efficiency n WALL : Total mass (=WT+WC+WCH) [kg] WCH : Chain mass [kg]


Compare TLU and TLf, and use whichever with the larger absolute value as the load torque TLR for the following calculations.

5.2 Selection of motor and inverter capacities (tentative)

LIFT OPERATION

(1) Selection of the motor capacity (tentative)

Select a motor capacity (tentative) based on the required power obtained in the last section. <u>Select a</u> motor capacity that is equal to or higher than the required power for typical operations.

 k_P : Margin coefficient for tentative inverter selection 1.0 to 2.0

Example: When the required power $P_{LR}=2.8$ [kW] and $k_p=1.0$
Tentatively select the motor capacity 3.7kW, which is the closest to the required power.

Check if the tentatively selected motor capacity satisfies the following condition.

Check if the load torque is within the rated motor torque.

If the value does not satisfy the formula, try a larger-capacity motor, and re-evaluate.

$$T_{M} = \frac{9550 \times P_{M}}{N_{M}} \ge T_{LR} [N \cdot m] \cdots (5.2-2)$$

 P_M : Rated motor output [kW]
 N_M : Rated motor speed [r/min] (Use the synchronous speed for the calculation.)

T_M : Rated motor torgue [N·m]

Points for motor capacity selection

Example: Different motor speeds (1600r/min and 1200r/min) produce different load torques although the required power (2.8kW) is the same. Because of this, different motor capacity must be selected.

When the motor capacity 3.7kW is selected according to the required power 2.8kW :

Rated motor torque $T_M = \frac{9550 \times 3.7}{1800} = 19.6 [N \cdot m]$

• When the required torque is 2.8kW, and the motor speed is 1200r/min :

Load torque T_{LR} = $\frac{9550 \times 2.8}{1200}$ = 22.3 [N·m]

TM=19.6<TLR=22.3

The load torque T_{LR} is larger than the rated motor torque T_M although the required power is 2.8kW, so the 3.7kW motor cannot be used. In this case, select a 5.5kW motor.

• When the required torque is 2.8kW, and the motor speed is 1600r/min :

Load torque T_{LR} = $\frac{9550 \times 2.8}{1600}$ = 16.7 [N·m]

TM=19.6>TLR=16.7

Because the load torque T_{LR} is within the rated motor torque T_M , a 3.7kW motor can be used.

(2) Selection of the inverter capacity (tentative)

Select the inverter capacity (tentative) based on the motor capacity (tentative) obtained in the last section. When using a motor with six poles or more, check that the rated inverter current is equal to or higher than the rated motor current.

Selected inverter capacity (tentative) $P_{INV} \ge$ Rated motor output P_M [kW] ...(5.2-3)

If the acceleration torque is required to be 1.4 times or more of the standard load torque, tentatively select the inverter capacity that is one rank higher than the motor capacity.

- Points for inverter capacity selection

Choice of an inverter model (series) affects the generated torque, the continuous operation range, and the braking efficiency of the motor. Consider this point when selecting an inverter model.

- Generated torque of the motor (Maximum short-time torque and starting torque)
- The generated torque under (Advanced) magnetic flux vector control is larger than the torque under conventional V/F control.
- Continuous operation range (the running frequency range where the 100% torque is generated) The continuous operation range widens when using a 1.5kW motor or less under (Advanced) magnetic flux vector control.
- Braking efficiency (built-in brake resistor)
 The inverter with a built-in brake resistor is suitable for outputting a brake torque and consuming the regenerative power during deceleration.

5.3 Assessment for the start

During inverter operation, the motor is started and accelerated with the current equal to or lower than the permissible current of the inverter (150% 1s). Because of this, the starting torque and the acceleration torque are smaller during inverter operation compared to commercial power supply operation.

Especially in ascending operation, the motor torque must be larger than the load torque TLR to prevent the object from dropping due to a starting torque shortage after the holding brake for the machine has been released.

Usually the more torque is required to move a stand-still object than the load torque T_{LR} due to the static friction. Make an assessment after full consideration on machines.

For regenerative driving, calculate with "machine efficiency η =1" considering the safety.

To start driving a machine (load), the starting torque of the motor must be higher than the starting torque of the load.

Find out the starting torque of the motor, and assess if the start is available.

(1) Starting torque of the motor

The starting torque of the motor during inverter operation is smaller than the torque during commercial power supply operation.

The starting torque of the motor is affected by the following conditions.

- Inverter capacity The starting torque is larger when a larger-capacity inverter is connected to the motor.
 - However, there is a limit to the connectable inverter capacity.
- Control method of the inverter
 - The starting torque under (Advanced) magnetic flux vector control is larger than the torque under V/F control. Torque boost
 - Under V/F control, the higher the torque boost setting is, the larger the starting torque becomes. (Starting torque......high torque boost setting>standard torque boost setting)

The maximum starting torque of the motor can be calculated by the following formula.

 $T_{MS} = T_M \times \alpha_S \times \delta [N \cdot m] \cdots (5.3-1)$

T_{MS} : Maximum starting torque [N·m]

as : Maximum starting torque coefficient......Select according to TECHNICAL NOTE No.30.

 δ : Hot coefficient...Select according to TECHNICAL NOTE No.30

Calculate the load torque at start by the following formula.

1) During power driving

LIFT OPERATION

$$T_{LS} = \frac{9.8 \times W \times V_{max}}{2\pi N_{max} \times \eta} + \frac{\mu_{S} \times 9.8 \times W_{ALL} \times V_{max}}{2\pi N_{max} \times \eta} [N \cdot m] \quad \dots (5.3-2)$$

2) During regenerative driving

TLS= | TLf | ...(5.3-3)

(2) Assessment for the start

The machine can be started when the following condition is satisfied.

Maximum starting torque of the motor T_{MS} > Load torque at start T_{LS} ...(5.3-4)

Example: • Load torque at start TLs=11 [N·m]

- Motor capacity of 3.7kW 4P(T_M =19.6 [N·m])
- FR-A520-3.7K inverter (V/F control with standard torque boost setting)

Starting torque of the motor $T_{MS} = T_M \times \alpha_S \times \delta$

= 19.6×0.8×0.85 = 13.3>TLs = 11 \Rightarrow The machine can start

- as : Maximum starting torque coefficient 0.8 (Power driving performance data in TECHNICAL NOTE No.30)
- δ : Hot coefficient 0.85 (Outline of Technical Note No.30 [DATA] in TECHNICAL NOTE No.30)
 - (Note) The output frequency (starting frequency) is determined for the starting torque coefficient of motor αs. When the desired minimum running frequency is within the starting frequency, some limits are applied to the operation range.

Operation may not be performed at the frequency equal to or lower than the starting frequency.

(3) Countermeasures to take when the start is unavailable

- 1) Change V/F control \Rightarrow (Advanced) magnetic flux vector control.
- 2) Use a larger-capacity inverter.
- 3) Use a larger-capacity inverter and a larger-capacity motor.

5.4 Assessment for the low-speed and high-speed operations

(1) Assessment for the low-speed operation

The low-speed operation is available when the output torque of the motor (maximum short-time torque) is larger than the load torque during the low-speed operation of less than 20Hz.

1) During power driving

 $T_{M} \times \alpha_{m} \times \delta > T_{LU} \cdots (5.4-1)$

2) During regenerative driving

$$\Gamma_{\rm M} \times \beta \times \delta > | T_{\rm Lf} | \cdots (5.4-2)$$

 $\begin{array}{l} \alpha_{\rm m} &: {\rm Maximum \ short-time \ torque \ coefficient \ \cdots \ Select} \\ & {\rm according \ to \ TECHNICAL \ NOTE \ No.30} \\ \delta &: {\rm Hot \ coefficient...Select \ according \ to} \\ & {\rm TECHNICAL \ NOTE \ No.30} \end{array}$

 T_{LU} : Load torque during power driving [N·m]

- : Deceleration torque coefficient ··· Select according to TECHNICAL NOTE No.30
- : Hot coefficient ... Select according to TECHNICAL NOTE No.30
- T_{Lf} : Load torque during regenerative driving [N·m]

β

δ

(2) Assessment for the high-speed operation

The high-speed operation is available when the output torque of the motor (maximum short-time torque) is larger than the maximum load torque during the high-speed operation of 20Hz or higher. Maximum frequency is limited in some motor capacities (frame number). Check TECHNICAL NOTE No.30 [DATA].

1) During power driving

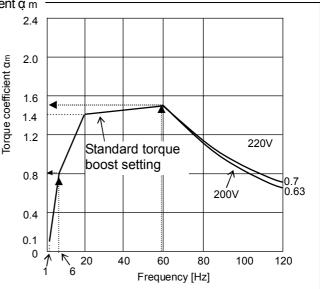
2) During regenerative driving

- am : Maximum short-time torque coefficient... Select according to Technical Note No.30
- T_{LU} : Load torque during power driving [N·m]

 β : Deceleration torque coefficient…

Select according to TECHNICAL NOTE No.30

 T_{Lf} : Load torque during regenerative driving [N·m]


How to obtain the maximum short-time torque coefficient $\ensuremath{\ensuremath{\mathsf{m}}}\xspace$ m

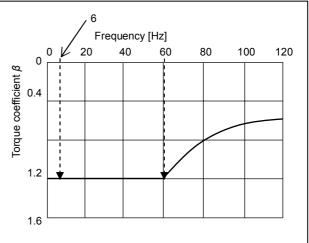
 Obtain the maximum short-time torque coefficient *a*m by referring to the maximum short-time torque characteristic diagram (shown right) in Chapter 2 Power driving performance data in TECHNICAL NOTE No.30.

Maximum short-time torque α_m is the following in the right diagram.

When a low-speed operation is performed at 6Hz $\alpha m = 0.8$

When a high-speed operation is performed at 60Hz $\alpha m{=}1.5$

How to obtain the deceleration torque coefficient β


 Obtain the deceleration torque coefficient β by referring to the deceleration torque characteristic diagram (shown right) in Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30.

Deceleration torque coefficient β is the following in the right diagram.

When a low-speed operation is performed at 6Hz

β=1.2

When a high-speed operation is performed at 60Hz β =1.2

5.5 Assessment for the acceleration/deceleration

LIFT OPERATION

(1) Applied torque to the motor in each operation block

Assume the operation pattern of Figure 5.2 (power driving during ascending, regenerative driving during descending). Calculate the applied torque to the motor in operation blocks 1) to 8).

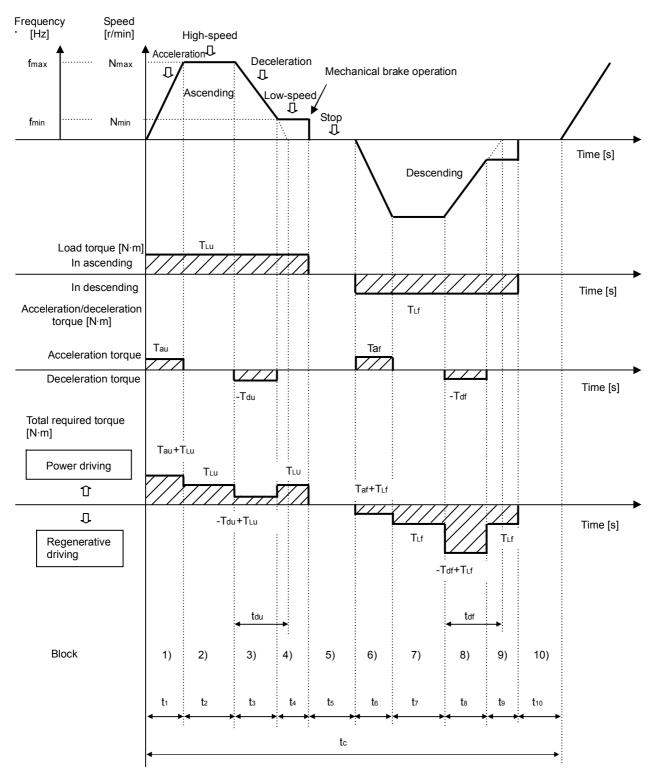


Figure 5.2 Operation pattern

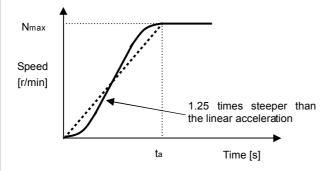
(2) Acceleration torque Tau, Taf

Calculate the acceleration torque applied to the motor in each operation block of Lift operation.

1) Acceleration torque during ascending Tau

Calculate the acceleration torque Tau in the following formula.

$T_{au} = \frac{\Sigma J \times N_{max}}{9.55 \times t_1} \qquad [N \cdot m] \cdots (5.5-1)$	ΣJ	: Total moment of inertia at motor shaft = J_M + J_B + J_L
		(motor) (brake) (load)
	t1	: Acceleration time during ascending [s]
	Nmax	: Maximum motor speed [r/min]
2) Acceleration torque during descendin	a T _{ef}	


Acceleration torque during descending Taf
 Calculate the acceleration torque Taf in the following formula.

Taf =	$\frac{\Sigma J \times Nmax}{9.55} \times t_6$	[N·m] …(5.5-2)	
	0.00 ↔ L		

Σl	: Total moment of inertia at motor shaft					
	= Jм	+	Jв	+	J∟	
	(moto	r)	(brake)	((load)	
t ₆	: Accelera	ition tir	me during	g de	scendir	ng [s]
Nmax	: Maximur	n mot	or speed	[r/m	iin]	

Acceleration/deceleration torque during S-pattern acceleration/deceleration (Pr.29=2)

When the S-pattern acceleration/deceleration is selected (Pr.29=2), the slope during S-pattern acceleration/deceleration is steeper than the slope during linear acceleration/deceleration in some area. Use the steepest area for the calculation.

In this S-pattern acceleration/deceleration (Pr.29=2), calculate the acceleration torque in the following formula.

 $T_{a} = \frac{\Sigma J \times Nmax}{9.55 \times ta} \times 1.25$ [N·m]

- How to calculate the acceleration time from the acceleration speed

When the time between the stop and the maximum speed Nmax (maximum travel speed Vmax) is indicated by the acceleration speed Acc, the Acc value can be converted to the acceleration time ta by the following formula.

		Vmax		Vmax	: Maximum travel speed [m/min]
ta	=	60 × Acc	[s]	Acc	: Acceleration speed [m/s ²]
					Acceleration speed is sometimes expressed in gravitational acceleration G.
					In that case, refer to the following equation.
					(Example) 1G = 9.8 [m/s2]

(3) Deceleration torque Tdu, Tdf

Calculate the deceleration torque applied to the motor in each operation block of Lift operation.

Calculate the deceleration torque Tdu in the follow	wing formula.
$T_{du} = \frac{1}{9.55 \times t_{du}} = \frac{20 \times (0.004 \times 10000)}{9.55 \times t_3} [N \cdot m]$ (5.5-3)	$\begin{array}{lll} \sum J & : \mbox{ Total moment of inertia at motor shaft} \\ & = & J_M & + & J_B & + & J_L \\ & & (motor) & (brake) & (load) \end{array} \\ t_3 & : \mbox{ Deceleration time during ascending [s]} \\ t_max & : \mbox{ Maximum motor speed [r/min]} \\ t_min & : \mbox{ Minimum motor speed [r/min]} \end{array}$

2) Deceleration torque during descending Tdf

1) Deceleration torque during ascending Tdu

Calculate the deceleration torque Tdf in the following formula.

$T_{df} = \frac{\Sigma J \times N_{max}}{9.55 \times t_{df}} = \frac{\Sigma J \times (N_{max} - N_{min})}{9.55 \times t_{8}} [N \cdot m]$ $\dots (5.5-4)$	 ∑ J : Total moment of inertia at motor shaft = J_M + J_B + J_L (motor) (brake) (load) t₈ : Deceleration time during descending [s]
	Nmax : Maximum motor speed [r/min] Nmin : Minimum motor speed [r/min]

. How to calculate the deceleration time from the acceleration speed

When the time between the maximum speed N_{max} (maximum travel speed V_{max}) and stop is indicated by the acceleration speed A_{cc} , the A_{cc} value can be converted to the deceleration time to by the following formula.

td = $\frac{Vmax}{60 \times Acc}$	Vmax [s] Acc	 Maximum travel speed [m/min] Acceleration speed [m/s²] Acceleration speed is sometimes expressed in gravitational
		acceleration G. In that case, refer to the following equation. (Example) 1G = 9.8 [m/s ²]

(4) Total torque

Calculate the total torque using the formulas in the table below.

Total torque	Operation	Operation block		Formula
Total acceleration	Power driving	1)	T₁=Tau +Tւu	(5.5-5)
torque	Regenerative driving	6)	T6=Taf+T∟f	(5.5-6)
Total deceleration	Power driving	3)	T₃=-Tdu+T∟u	(5.5-7)
torque	Regenerative driving	8)	T8 =-Tdf +T ∟f	(5.5-8)
Total torque during	Power driving	2), 4)	T2, T4 = Tlu	(5.5-9)
constant-speed				
operation	Regenerative driving	7), 9)	T7, T9 = T∟f	(5.5-10)
(high/low speed)				

(5) Assessment for the acceleration

Check that the output torque of the tentatively selected motor is larger than the torque required for the acceleration.

The total torque required for the acceleration T_{at} is T_1 in the operation block 1) or T_6 in the operation block 6), whichever is larger.

(Note) Regenerative acceleration is performed when T₁<0 and T₆<0. The maximum torque required for regenerative operation is calculated in the assessment for deceleration. It does not have to be calculated for the assessment for acceleration.

Output torque of the motorTotal required torque for the acceleration $T_M \times \alpha_a$ > T_{at} ...(5.5-11)

 α_a : Linear acceleration torque coefficient.....Select according to TECHNICAL NOTE No.30.

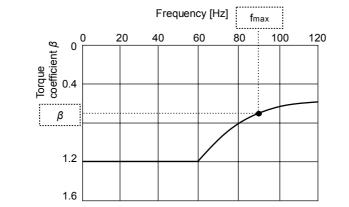
If the above condition is not satisfied, take the following measures to output larger torque from the motor.

- If V/F control has been used, set the torque boost setting higher. Alternatively, use (Advanced) magnetic flux vector control.
- 2) Use an inverter capacity that is one rank higher than the motor capacity.
- 3) Use one-rank-higher motor and inverter capacities.

(6) Assessment for the deceleration

Check that the brake toque generated from the tentatively selected motor and inverter is larger than the torque required for the deceleration.

The total torque required for the deceleration T_{dt} is T₃ in the operation block 3) or T₈ in the operation block 8), whichever is smaller.


- When "Tdt<0", assess for the deceleration by assuming "Tdt= | Tdt | ."
- (Note) Regenerative deceleration is performed when T₃>0 and T₈>0. The maximum torque required for power operation is calculated in the assessment for acceleration. It does not have to be calculated for the assessment for deceleration.

Output torque of the motor Required torque for the deceleration TM × β > T_{dt} ...(5.5-12)

 β : Deceleration torque coefficient......Select according to TECHNICAL NOTE No.30.

If the above condition is not satisfied, take the following measures to output larger torque from the motor. 1) Additionally use an external brake resistor or a brake unit.

- 2) Use a power regeneration converter.
- How to obtain the deceleration torque coefficient β
- (1) Refer to Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30. Select a braking option to be additionally used that satisfies the following condition: The value in first two digits of torque type (indicating the maximum torque %) is equal to or higher than the required brake torque.
- (2) Calculate the torque coefficient when additionally using a braking option, which has been selected according to the brake torque data in Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30.

5.6 Regenerative power calculation (temperature calculation of the braking option)

(1) Regenerative power calculation

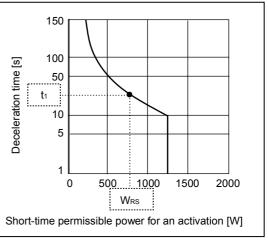
Assume the operation pattern of Figure 5.2. To assess the permissible temperature for deceleration, calculate the average regenerative power (W_{INV}) that is regenerated to the inverter in one cycle time (t_c). Then, check that the average regenerative power (W_{INV}) is less than the consumable power of the brake (the continuous operation permissible power of a braking option W_{RC} and the short-time permissible power of a braking option activation W_{RS}).

The following table shows the power at different operation blocks. When the obtained value is a negative value, it is a regenerative power.

Block	Power	[W]	
1)	$W_1 = 0.1047 \times \frac{Nmax}{2} \times T_1$	(5.6-1)	
2)	W ₂ = 0.1047 ×Nmax × T ₂	(5.6-2)	
3)	$W_3 = 0.1047 \times \frac{Nmax + Nmin}{2} \times T_3$	(5.6-3)	
4)	W ₄ = 0.1047 ×Nmin × T ₄	(5.6-4)	
6)	$W_6 = 0.1047 \times \frac{Nmax}{2} \times T_6$	(5.6-5)	
7)	W ₇ = 0.1047 ×Nmax × T ₇	(5.6-6)	
8)	$W_8 = 0.1047 \times \frac{Nmax + Nmin}{2} \times T_8$	(5.6-7)	
9)	W ₉ = 0.1047 ×Nmin × T ₉	(5.6-8)	

(2) Check for the short-time regenerative power

Check that the regenerative power W_n (W_1 to W_4 , W_6 to W_9) is within the short-time permissible power W_{RS} in the operation block 1) to 4) and 6) to 9).


Assess only the operation blocks where Wn is a negative value.

 $W_{RS} > |W_n| \times 0.9^* \quad \cdots (5.6-9)$ * Calculate with 1.0 for the capacitor regeneration. WRS: Short-time permissible power of a braking option (Refer to TECHNICAL NOTE No.30)

· How to obtain the short-time permissible power WRS

Select the short-time permissible power of the braking option by referring to the permissible power data in Chapter 3 in TECHNICAL NOTE No.30.

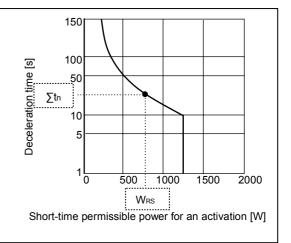
Calculate the short-time permissible power from the deceleration time (regenerative constant-speed operation

(3) Check for the regenerative power generated in the continuous regenerative operation range Assess the regenerative power for the operation blocks where the regenerative status is continuous (W₀to W₀).

Calculate $W_n \times t_n$ and t_n only for the operation blocks where the power is continuously negative (regenerative status).

$$\begin{split} &\mathsf{W}_{nc} = \frac{\left| \boldsymbol{\Sigma} \big(\mathrm{W}_n \times \mathrm{tn} \big) \right|}{\boldsymbol{\Sigma} \mathrm{tn}} \quad \textbf{\times 0.9}^{\star} \quad [\mathsf{W}] \cdots \textbf{(5.6-10)} \\ & \quad \textbf{* Calculate with 1.0 for the capacitor regeneration.} \end{split}$$

Check that the average power of the continuous regenerative operation range W_{nc} is within the short-time permissible power of the braking option W_{RS} .


W_{RS} > W_{nc} ...(5.6-11)

WRS: Short-time permissible power of a braking option (Refer to TECHNICAL NOTE No.30)

How to obtain the short-time permissible power $W_{\mbox{\scriptsize RS}}$

Select the short-time permissible power of the braking option by referring to the permissible power data in Chapter 3 in TECHNICAL NOTE No.30.

Calculate the permissible power for an activation by adding up the values in the operation blocks where the regenerative status is continuous.

(4) Check for the average regenerative power

Using the following formula, calculate the average power to be regenerated to the inverter W_{INV} in a cycle. Calculate $W_n \times t_n$ and t_n only for the operation blocks where the power is negative (regenerative status).

$$W_{INV} = \frac{\left|\Sigma(Wn \times tn)\right|}{tc} \times 0.9^{*} \quad [W] \quad \cdots (5.6-12)$$
* Calculate with 1.0 for the capacitor regeneration

Compare the average power regenerated to the inverter W_{INV} and the consumable power by the braking option W_{RC} in a cycle (tc), and assess for the regenerative operation.

W_{RC} > W_{INV} ...(5.6-13)

WRC: Continuous operation permissible power of a braking option (Refer to TECHNICAL NOTE No.30)

- Regenerative braking methods -
- * When the capacity is small and the regenerative power is small, the power can be charged temporarily in the smoothing capacitor. This method is called <u>capacitor regeneration</u> and used for about 0.4kW or less.
- * For medium-size capacities, the power is consumed as heat by feeding current to a resistor. This method is called <u>resistor regeneration</u>. Larger resistor is required for higher regenerative power, and attention must be paid to how the heat affects the surrounding area.
- * For large-size capacities with high regenerative power, the regenerative power is returned to the power supply side. This method is called <u>power regeneration</u>. This method is recommended for <u>a lift system with long continuous regeneration time</u>, or for 15kW or higher capacities.

Regenerative power calculation example The following section explains how the regenerative power can be calculated in operation patterns (power driving during ascending, regenerative driving during descending) of Figure 5.2. Frequency [Hz] Ascending Descending W1 Power [W] W4 Power W_2 Wз driving W₉ W₆ W7 W8 Regenerative t9 t4 driving Time [s] t1 t2 tз t5 t6 t7 t8 **t**10 tc Check for the short-time regenerative power Check that the regenerative power Wn is within the short-time permissible power of the braking option WRs in each operation block. Check that the power of W_6 , W_7 , W_8 , and W_9 are within the short-time permissible power W_{RS} . W_{RS} (value at t₆)> W_6 ×0.9 WRS: Short-time permissible power of a braking option W_{RS} (value at t_7)> W_7 ×0.9 (Refer to TECHNICAL NOTE No.30) W_{RS} (value at t₈)> W_8 ×0.9 W_{RS} (value at t₉)> $|W_9| \times 0.9$ Check for the regenerative power generated in the continuous regenerative operation range • Assess the regenerative power for the operation blocks where the regenerative status is continuous. Regenerative operation is continuous in W_6, W_7, W_8 , and W_9 , so check these operation blocks. Wnc= $\frac{|(W_6 \times t_6) + (W_7 \times t_7) + (W_8 \times t_8) + (W_9 \times t_9)|}{(t_6 + t_7 + t_8 + t_9)}$ ×0.9 [W] Check that the average power of the continuous regenerative operation range Wnc is within the short-time permissible power of the braking option WRS. WRS: Short-time permissible power of a braking option W_{RS} (value at " $t_6+t_7+t_8+t_9$ ")> W_{nc} (Refer to TECHNICAL NOTE No.30) Check for the average regenerative power Check that the average power to be regenerated to the inverter WINV in a cycle is within the continuous operation permissible power of the braking option WRC. $| (W_6 \times t_6) + (W_7 \times t_7) + (W_8 \times t_8) + (W_9 \times t_9) |$ ×0.9 [W] WINV= tc Assess by the average power regenerated to the inverter W_{NV} and the consumable power by the braking WRC: Continuous operation permissible power of a braking option option WRC in a cycle (tc). (Refer to TECHNICAL NOTE No.30) W_{RC} > W_{INV}

LIFT OPERATION

5.7 Temperature calculation of the motor and inverter

(1) Operation pattern

For a lift system with frequent starts/stops or with long-duration operation at low-speed, calculate the current in each operation block of one cycle. Then, check that the root mean square of the currents, which is the average current throughout the cycle, is within the rated current of the motor.

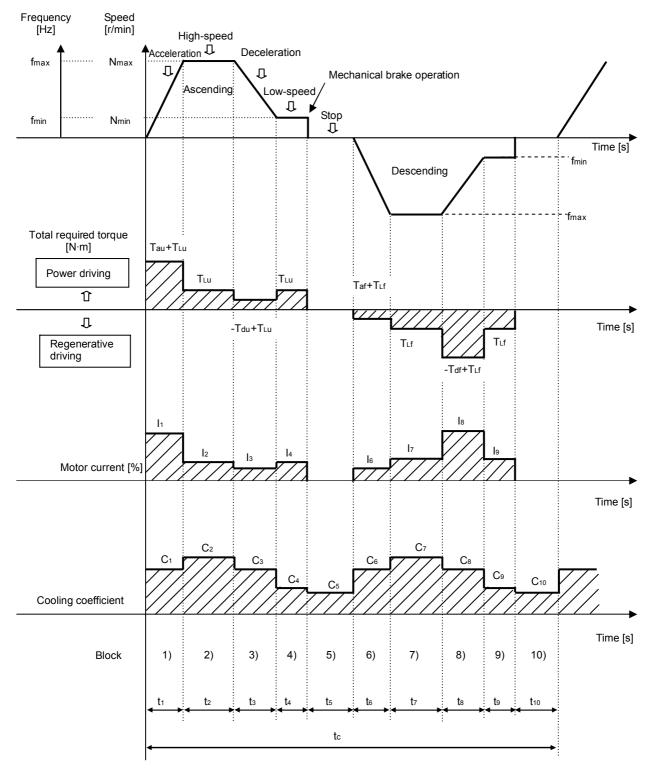


Figure 5.3 Operation pattern example

(2) How to calculate the motor current l₁, l₂...ln [%] and the cooling coefficient C₁, C₂...Cn 1) Calculate the load torgue ratio TF in each operation block.

Load torque ratio $TF_n = \frac{\text{Total torque in each operation block }T_n}{\text{Rated motor torque }T_M}$	• × 100 [%] ···(5.7-1) (n=1, 2, 3)
--	---------------------------------------

- To drive at 60Hz or higher

Calculate the current-equivalent load torque ratio TF_1 for the rated output range of the motor (the range equal to or higher than the base frequency)(example : 60 to 120Hz).

Current-equivalent load torque		Total torque in each operation block Tn		Pupping froguopov
ratio in the range equal to or	=		×	Running frequency × 100[%]
higher than the base		Rated motor torque T _M		Base frequency
frequency TE				

(Note) Total torque in an operation block is the total torque in each of T_1 to T_4 and T_6 to T_9 .

2) How to calculate the cooling coefficient C1, C2...Cn

Calculate the coefficient by referring to Chapter 4 Motor and brake characteristics in TECHNICAL NOTE No.30.

3) How to calculate the motor current

Calculate the ratio of the motor current (%) to the load torque ratio TF (current equivalent load torque ratio TF_i), which is obtained in 1), by referring to Chapter 4 Motor and brake characteristics in TECHNICAL NOTE No.30.

When the maximum frequency is higher than the base frequency during acceleration/deceleration, multiply the obtained motor current [%] by the current compensation coefficient. (Refer to Chapter 4 Motor and brake characteristics in TECHNICAL NOTE No.30.)

(Note) The current is higher during Cyclic operation under vector control. Multiply the above-obtained value by 1.2 times, and use that value as the motor current In.

- When the average current is around 100%

When driving a standard motor by an inverter, higher motor current (about 1.1 times) is required to output the same amount of torque compared with when driving by the commercial power supply. When the equivalent current of the motor torque is 100%, 110% current flows during the inverter operation, and little margin for the temperature rise is left. Thoroughly consider the load condition and operation duty.

(3) Temperature calculation of the motor

If the following condition is satisfied in Figure 5.3, the use of motor is available regarding the temperature.

$I_{MC} = \sqrt{\frac{\Sigma(\ln^2 \times tn)}{\Sigma(Cn \times tn)}}$	< 100 [%](Note)(5.7-2)	
Імс I1, I2,In C1, C2,Cn	: Equivalent current of motor torque considering the cooling coefficient [% : Current characteristic in the operation block t ₁ , t ₂ t _n [%] : Cooling coefficient for the frequency in the operation block t ₁ , t ₂ t _n .	6]

– (Information) Calculation table for motor temperature –

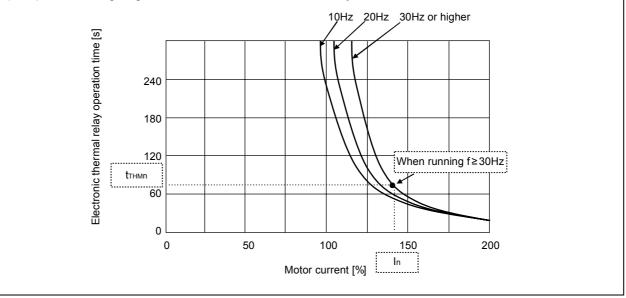
Operation block	Time period in the block [s]	Total torque in the operation block [N·m]	Load torque ratio [%]	Cooling coefficient	Motor current [%]	In ² ×tn	Cn×tn
1)	t1=	T1=	TF₁=	C1=	I ₁ =	$I_1^2 \times t_1 =$	$C_1 \times t_1 =$
2)	t2=	T ₂ =	TF ₂ =	C ₂ =	l ₂ =	$l_2^2 \times t_2 =$	C ₂ ×t ₂ =
3)	t3=	T3=	TF3=	C3=	l ₃ =	$I_{3}^{2} \times t_{3} =$	C ₃ ×t ₃ =
4)	t4=	T4=	TF4=	C4=	 4=	$ _{4}^{2} \times t_{4} =$	C ₄ ×t ₄ =
5)	t5=	T5=	TF₅=	C5=	1 5 =	$I_5^2 \times t_5 =$	C5×t5=
6)	t ₆ =	T ₆ =	TF ₆ =	C ₆ =	I ₆ =	$I_6^2 \times t_6 =$	$C_6 \times t_6 =$
7)	t7=	T7=	TF7=	C7=	I7=	$I_7^2 \times t_7 =$	$C_7 \times t_7 =$
8)	t8=	T8=	TF8=	C8=	I 8=	$ _{8}^{2} \times t_{8} =$	C ₈ ×t ₈ =
9)	t9=	T9=	TF ₉ =	C9=	 9 =	$ _9^2 \times t_9 =$	C ₉ ×t ₉ =
10)	t10=	T ₁₀ =	TF10=	C ₁₀ =	10=	$I_{10}^2 \times t_{10} =$	C ₁₀ ×t ₁₀ =

(4) Electronic thermal relay check

Check that the motor does not overheat even if the equivalent current of the motor torque I_{MC} drops to 100% or less during acceleration and constant-speed operation.

οροιαιίο	TI DIOCK.			
Operation	Time period in	Average running	Motor current	Electronic thermal relay
block	the block [s]	frequency [Hz]	[%]	operation time [s]
1)	t1	fmax 2	l1	tтнм1=
2)	t2	fmax	2	t тнм2 =
3)	t₃	$\frac{fmax + fmin}{2}$	lз	tтнмз=
4)	t4	fmin	4	tтнм4=
5)	t₅	0	I5=0	tтнм5 =0
6)	t ₆	fmax 2	le	tтнм6=
7)	t7	fmax	I 7	tтнм7=
8)	ts	$\frac{fmax + fmin}{2}$	le	tтнмв=
9)	t9	fmin	9	t тнм9=
10)	t 10	0	I ₁₀ =0	t тнм10 =0

1) Calculate the ratio of the electronic thermal relay operation time to the load torque ratio in each operation block.


2) Check that the time period in each block is shorter than the electronic thermal relay operation time.

tn < t⊤∺mn …(5.7-3)

- How to calculate the electronic thermal relay operation time t_{THMN} -

Calculate the time using the average running frequency and the motor current by referring to Electronic thermal relay characteristic in TECHNICAL NOTE No.30.

(Note) The following diagram shows the electronic thermal relay characteristics of a standard motor.

(5) Transistor protection thermal check

If the current larger than the 150% rated inverter current (120% for the FR-F500 series) flows, the transistor protection of the inverter is activated. To prevent this, check the protective function does not get activated during the operation.

Load ratio to the rated inverter current TF_{INV} [%] = $\frac{I_n[\%] \times Rated motor current [A]}{Rated inverter current [A]} \cdots (5.7-4)$ In[%] : Motor current in each operation block

		aled inverter current in each operation block.
Operation	Motor current [%]	Load ratio to the rated inverter current [%]
block		
1)	₁ =	$TF_{INV1} = I_1 \times \frac{Rated motor current}{Rated inverter current} =$
2)	₂ =	$TF_{INV2} = I_2 \times \frac{Rated motor current}{Rated inverter current} =$
3)	₃ =	$TF_{INV3} = I_3 \times \frac{Rated motor current}{Rated inverter current} =$
4)	₄ =	$TF_{INV4} = I_4 \times \frac{Rated motor current}{Rated inverter current} =$
5)	I5 =0	TFINV5=0
6)	₆ =	$TF_{INV6} = I_6 \times \frac{Rated motor current}{Rated inverter current} =$
7)	₇ =	$TF_{INV7} = I_7 \times \frac{\text{Rated motor current}}{\text{Rated inverter current}} =$
8)	₈ =	TF _{INV8} =I ₈ × Rated motor current Rated inverter current
9)	₉ =	$TF_{INV9} = I_{9} \times \frac{Rated motor current}{Rated inverter current} =$
10)	l 10 =0	TFINV10=0

1) Calculate the load ratio to the rated inverter current in each operation block.

2) Check that the load ratio to the rated inverter current TF_{INV} is within 150% (within 120% for FR-F500) in each operation block.

 $TF_{INV} \leq 150\%(Note) \cdots (5.7-5)$

(Note) It is 120% for the FR-F500 series inverters.

5.8 Stop accuracy

This section describes about the stop operation using a mechanical brake in the speed pattern shown in Figure 5.4.

Mechanical brake is always installed next to lifting equipment to keep a status. The stop accuracy is affected by the characteristic of the mechanical brake at a stop. Stop accuracy can be improved by setting lower minimum speed fmin in the inverter. However, fmin must be 6Hz or higher for lifting equipment. Calculate the frequency at minimum speed fmin based on the mechanical brake characteristics and the required stop accuracy, and if fmin is less than 6Hz, re-evaluate the inverter's frequency output range.

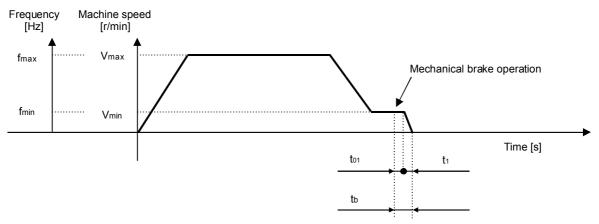


Figure 5.4 Speed pattern to a stop

(1) Characteristics of a mechanical brake

When using a TB brake, calculate the following constants by referring to Chapter 4.5 Brake characteristic (Chapter 4 Motor and brake characteristics) in TECHNICAL NOTE No.30.

Rated brake torque	:	T _B [N⋅m]
Coasting time (cutoff in advance)	:	to1 [S]
Brake moment of inertia	:	J _B [kg⋅m²]

(2) Stop accuracy when the machine stops from the low-speed (creep speed) operation

Calculate the time to stop and the distance to stop in the following formulas, and estimate the stop accuracy. 1) For power driving

Time to stop tb = Coasting time to₁ + Braking time t₁₁
=
$$t_{01} + \frac{\Sigma J \times Nmin}{9.55 (T_B + T_{LU})}$$
 [s] ...(5.8-1)

2) For regenerative driving

Time to stop tb = Coasting time to1 + Braking time t11
=
$$t_{01} + \frac{\Sigma J \times Nmin}{9.55 (T_B + T_{,f})}$$
 [s] ...(5.8-2)

Distance to stop $S = S_{01} + S_{11}$

$$= \left(t_{01} \times \frac{V\min}{60} + t_{11} \times \frac{1}{2} \times \frac{V\min}{60}\right) \times 10^{3}$$
 [mm] ...(5.8-3)

Vmin : The speed immediate before a stop

= The machine speed equivalent to the motor speed Nmin [r/min]

(low-speed operation speed = creep speed) [m/min]

Estimated stop accuracy $\Delta \varepsilon = \pm \frac{S}{2} \quad [mm] \quad \cdots (5.8-4)$

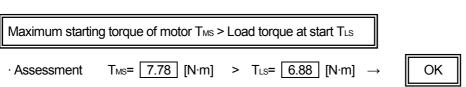
CHAPTER 6 SELECTION EXAMPLE FOR CONTINUOS OPERATION (SELECTION EXAMPLE FOR A CONVEYOR)

(Load/operation specification)

Power supply voltage/frequency 220 [V] 60 [Hz] Friction coefficient $\mu = 0.1$ (Friction coefficient at start $\mu = 0.15$) Machine efficiency $\eta = 0.85$ Conveying mass $W = 1800$ [kg] Conveying speed Vmin = 8.3 to Vmax = 25 [m/min] Motor speed Nmin = 600 to Nmax = 1800 [r/min] Motor Conveyor W Output frequency fmin = 20 to fmax = 60 [Hz] Load moment of inertia J _L = 0.0375 [kg·m ²] Desired acceleration/deceleration time Acceleration ta= 8 [s] Deceleration time td= 8 [s]
Calculation of load-driving power and load torque
(1) Required power P _{LR} $ \cdot \text{Required power} P_{LR} = \frac{\mu \times W \times V_{max}}{6120 \times \eta} = \boxed{\frac{0.1 \times 1800 \times 25}{6120 \times 0.85}} = \boxed{0.87} \text{ [kW]} $ (2) Torque at motor shaft T _{LR} $ \cdot \text{Load torque at motor shaft} T_{LR} = \frac{9550 \times P_{LR}}{Nmax} = \boxed{\frac{9550 \times 0.87}{1800}} = \boxed{4.62} \text{ [N·m]} $
Selection of motor and inverter capacities (tentative)
(1) Selection of the motor capacity (tentative) · Because the required power is 0.87kW, select a 1.5kW motor. \rightarrow SF-JR 1.5kW 4P · Rated motor torque $T_M = \frac{9550 \times P_M}{N_M} = \frac{9550 \times 1.5}{1800} = 7.96$ [N·m] · Assessment for the motor capacity (tentative) © Assessment condition
Rated motor torque $T_{M} \geq$ Load torque T_{LR}
$\begin{array}{c} \cdot \text{Assessment} \\ T_{M} = \boxed{7.96} [N \cdot m] \geq T_{LR} = \boxed{4.62} [N \cdot m] \rightarrow OK \end{array}$
(2) Inverter capacity Tentatively select an inverter capacity that is same as the motor.

 \rightarrow FR-E520-1.5K V/F control (high torque boost setting)

Assessment for the start


(1) Starting torque of the motor

	 • Starting torque of the motor $T_{MS}=T_M \times \alpha_S \times \delta = [7.96 \times 1.15 \times 0.85] = [7.78] [N·m]$					
NOTE No.30	Starting torque coefficient Hot coefficient	αs : 1.15 δ : 0.85	Power driving performance data in TECHNICAL NOTE No.30 Outline of Technical Note No.30 [DATA] in TECHNICAL NOTE No.30			

Load torque at start
$$T_{LS} = \frac{\mu_{S} \times 9.8 \times W \times V_{max}}{2\pi \times N_{max} \times n} = \frac{0.15 \times 9.8 \times 1800 \times 25}{2\pi \times 1800 \times 0.85} = 6.88 [N \cdot m]$$

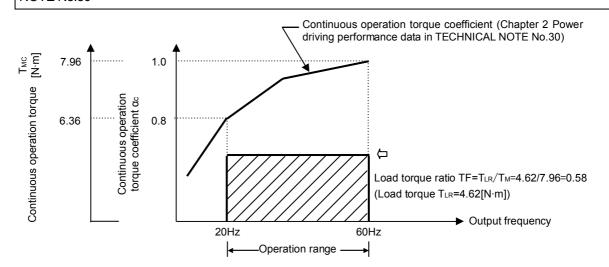
(2) Assessment for the start

OAssessment condition

Assessment for the continuous operation

(1) Continuous operation torque

Check if the load torque T_{LR} is less than the continuous motor operation torque in the continuous operation range (600 to 1800r/min).

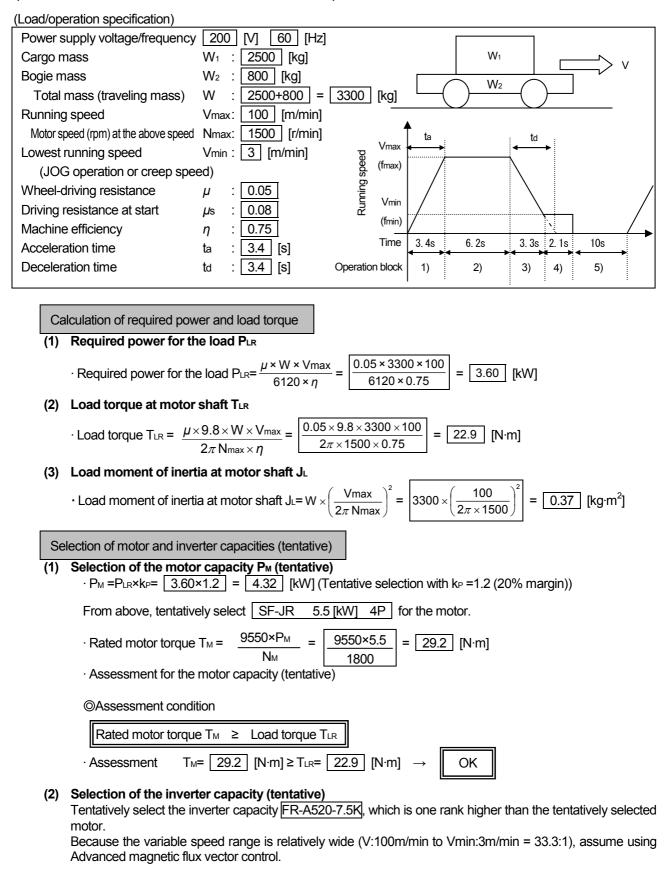

1) Continuous motor operation torque at 1800r/min (60Hz)

· Continuous motor operation torque $T_{MC}=T_M \times \alpha_C = \boxed{7.96 \times 1.0} = \boxed{7.96}$ [N·m]

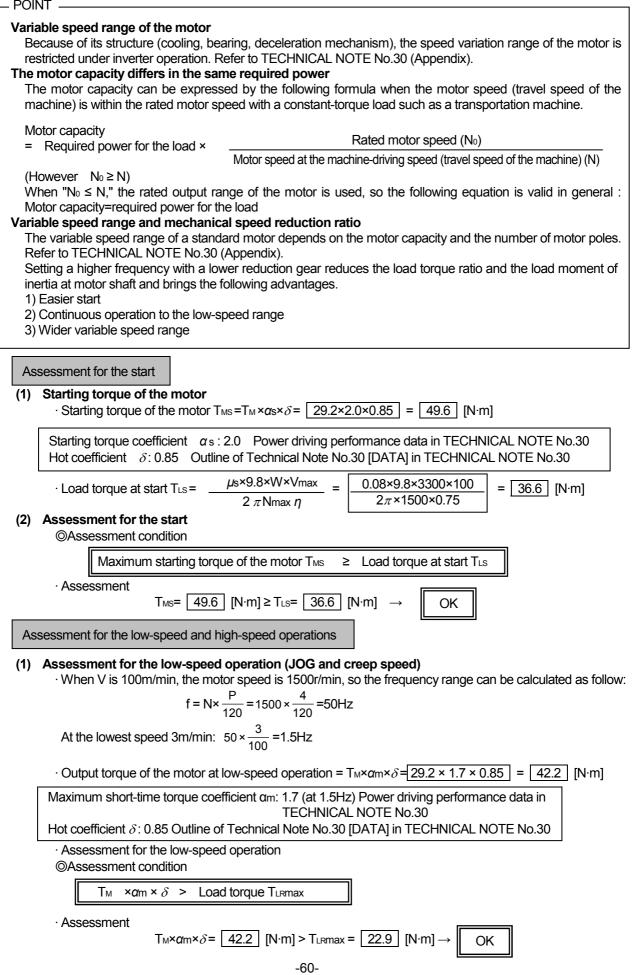
Continuous operation torque coefficient α c : 1.0 (at 60Hz) Power driving performance data in TECHNICAL NOTE No.30

2) Continuous motor operation torque at 600r/min (20Hz) ·Continuous motor operation torque $T_{MC}=T_M \times \alpha_C = \boxed{7.96 \times 0.8} = \boxed{6.36}$ [N·m]

Continuous operation torque coefficient α c : 0.8 (at 20Hz) Power driving performance data in TECHNICAL NOTE No.30


(2) Assessment for the continuous operation

OAssessment condition


Continuous operation torque of the motor T_{MC} > Load torque T_{LR}			
· Assessment T_{MC} = 6.36 [N·m] > T_{LR} = 4.62 [N·m] \rightarrow OK			
Assessment for the acceleration			
(1) Shortest acceleration time tas			
$ \text{Shortest acceleration time} \text{tas} = \frac{(J_{L} + J_{M} + J_{B}) \times \text{Nmax}}{9.55 (T_{M} \times \alpha_{a} - T_{LR} \text{max})} = \frac{(0.0375 + 0.0068 + 0) \times 1800}{9.55(7.96 \times 1.15 - 4.62)} = 1.8 \text{ [s]} $			
Linear acceleration torque coefficient α_a : 1.15 Power driving performance data in TECHNICAL NOTE No.30 Motor moment of inertia J _M : 0.0068 [kg·m ²] Motor and brake characteristics in TECHNICAL NOTE No.30 Maximum load torque T _{LRmax} : 4.62 [N·m] T _{LR} is used.			
(2) Assessment for the acceleration			
©Assessment condition Shortest acceleration time tas < Desired acceleration time ta			
Assessment tas= 1.8 [s] < ta= 8 [s] \rightarrow OK			
Assessment for the deceleration			
(1) Shortest deceleration time tds			
$\cdot \text{ Shortest deceleration time } \text{ tds} = \frac{(J_{L} + J_{M} + J_{B}) \times \text{Nmax}}{9.55 (\text{T}_{M} \times \beta + \text{T}_{LR}\text{min})} = \frac{(0.0375 + 0.0068 + 0) \times 1800}{9.55 (7.96 \times 0.2 + 0)} = 5.2 \text{ [s]}$			
Deceleration torque coefficient β : 0.2 Power driving performance data in TECHNICAL NOTE No.30 Motor moment of inertia J _M : 0.0068[kg·m ²] Motor and brake characteristics in TECHNICAL NOTE No.30 Minimum load torque T _{LRmin} : The toughest condition for the deceleration, T _{LRmin} = 0 [N·m], is used			
(2) Assessment for the deceleration			
©Assessment condition			
Shortest deceleration time tds < Desired deceleration time td			
· Assessment tds= 5.2 [s] < td= 8 [s] \rightarrow OK			
Regenerative power (when the deceleration time is 8s)			
(1) Assessment for the consumable regenerative power The regenerative power can be consumed by the capacitor regeneration, so the deceleration is confirmed			
to be available.			
[Final selection]			
Motor : SF-JR 1.5kW 4P			
Inverter : FR-E520-1.5K V/F control (high torque boost setting)			
Brake resistor : Not required (capacitor regeneration)			

CHAPTER 7 SELECTION EXAMPLE FOR CYCLIC OPERATION

(SELECTION EXAMPLE FOR A BOGIE)

POINT -

(2) Assessment for the high-speed operation

()	• Output torque of the motor at high-speed operation = $T_M \times \alpha_m = 29.2 \times 2.0 = 58.4$ [N·m]					
	Maximum short-time operation torque coefficient α_m : 2.0 (at 50Hz) Power driving performance data in TECHNICAL NOTE No.30					
	• Assessment for the high-speed operation \bigcirc Assessment condition $\boxed{T_M \times \alpha_M}$ > Load torque T_{LRMax}					
	· Assessment $T_M \times \alpha m = 58.4 [N \cdot m] > T_{LR max} = 22.9 [N \cdot m] \rightarrow OK$					
As	sessment for the acceleration (calculation of the acceler	ation torque)				
(1)		$\frac{J_{B}+J_{L}\times N_{max}}{9.55\times t_{a}} = \frac{(0.028+0.0016+0.37)\times 1500}{9.55\times 3.4}$				
	Motor moment of inertia J_M : 0.028[kg·m ²]	Motor characteristic table in TECHNICAL NOTE No.30.				
	Brake moment of inertia J_B : 0.0016[kg·m ²] (TB-7.5) Load moment of inertia J_L : 0.37[kg·m ²]	TB brake characteristic table in TECHNICAL NOTE No.30. From the calculation of the required power and load torque in (3)				
(2) (3)	Total acceleration torque Tat · Total acceleration torque Tat=Ta+TLRmax = 18.5 +2 Assessment for the acceleration					
		= <u>54.3</u> [N·m] wering driving performance data in TECHNICAL DTE No.30				
	©Assessment condition					
	$T_{M} \times \alpha_{a} > Total acceleration torque Tat$					
	· Assessment $T_M \times \alpha_a = 54.3 [N \cdot m] > T_{at} =$	$=$ 41.4 [N·m] \rightarrow OK				
As	sessment for the deceleration (calculation of the deceler	ation torque)				
(1)	Deceleration torque Td $\Sigma J \times N_{max}$ $(J_M + I_{max})$ · Deceleration torque Td= $9.55 \times td$ =	$\frac{J_{B}+J_{L})\times N_{max}}{9.55\times td} = \frac{(0.028+0.0016+0.37)\times 1500}{9.55\times 3.4}$				
	= <u>18.5</u> [N·m]					
	Motor moment of inertia J _M : 0.028[kg·m²]	Motor characteristic table in TECHNICAL NOTE No.30				
	Brake moment of inertia J_B : 0.0016[kg·m ²] (TB-7.5)	TB brake characteristic table in TECHNICAL NOTE No.30				
	Load moment of inertia J∟ : 0.37[kg·m ²]	From the calculation of the required power and load torque in (3)				

(2) Total deceleration torque Tdt

Total deceleration torque Tdt = $-Td + T_{LRmin} = -18.5 + 17.2 = -1.3$ [N·m]

In this case, the minimum load torque (T_{LRmin}) is calculated with the machine efficiency η =1 considering the safety.

 $T_{\text{LRmin}} = \mu \times 9.8 \times \text{W} \times \frac{\text{Vmax}}{2\pi \text{ Nmax} \eta} = 0.05 \times 9.8 \times 3300 \times \frac{100}{2\pi \times 1500 \times 1} = 17.2 \quad \text{[N·m]}$

(3) Assessment for the deceleration

• Output torque of the motor $T_M \times \beta = 29.2 \times 1.2 = 35.0 [N \cdot m]$ Deceleration torque coefficient β (built-in brake) : 1.2 (Minimum value in the operation range 1.5 to 50Hz) Regeneration performance data in TECHNICAL NOTE No.30

OAssessment condition

 $T_{M} \times \beta$ > Total deceleration torque T_{dt}

· Assessment T_{M} × β = 35.0 [N·m] > |T_{dt}| = 1.3 [N·m] → OK Because "Tdt<0," assess for the deceleration as Tdt= | Tdt | . Regenerative power calculation

(1) Check for the short-time permissible power • Power regenerated from machine

$$W_{\text{MECH}} = 0.1047 \times (-\text{Td} + \text{T}_{\text{LRmin}}) \times \frac{\text{Nmax} + \text{Nmin}}{2} \quad [W]$$

$$= 0.1047 \times (-18.5 + 17.2) \times \frac{1500 + 45}{2} = -105.1$$
 [W]

· Power consumed at motor

 $W_M = (k_1 - k_2) \times P_{LR} = (84 - 2) \times 3.6 = 295 [W]$

Conversion coefficient k_1 :84 when $f_{max} = 50$ Hz, and the reference frequency = 60 Hz (Regeneration performance data in TECHNICAL NOTE No.30) Conversion coefficient k_2 :2 when $f_{min} = 1.5$ Hz, and the reference frequency = 60 Hz (Regeneration performance data in TECHNICAL NOTE No.30)

· Power regenerated to inverter

W_{INV} = | W_{MECH} | - W_M = 105.1-295 = -189.9 [W]

In this case, the power regenerated to the inverter is a negative value (power driving), so the operation system is not in the regenerative status.

 $W_{INV} \le 0$ means that all the regenerative power is consumed at the motor and not regenerated to the inverter. Therefore, the following regenerative power assessments are not required, but assessed here for a reference.

· Assessment for the consumable regenerative power (short-time permissible power)

OAssessment condition

· Assessment W_{RS} = 2860 [W] > W_{INV} = -189.9 [W] \rightarrow OK	Short-time perm	Short-time permissible power of a braking option W_{RS} > Power regenerated to inverter W_{INV}				
	· Assessment	W_{RS} = 2860 [W] > W_{INV} = -189.9 [W] \rightarrow OK				
Short-time permissible power of the braking option (built-in brake) $W_{RS:}$ 2860 when the deceleration time (usage time) is 3.3s						

Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30

(2) Check for the average continuous regenerative power

• Average continuous regenerative power $W_{INV} \times \frac{t_3}{t_c}$

$$= -189.9 \times \frac{3.3}{3.4 + 6.2 + 3.3 + 2.1 + 10.0} = -25.1$$
[W]

· Assessment for the consumable regenerative power (continuous operation permissible power)

©Assessment condition

Continuous operation permissible power	>	Average continuous regenerative power
of a braking option WRC		$\left(W_{INV} \times \frac{t_3}{t_c} \right)$

· Assessment

Continuous operation
permissible power
$$W_{RC}$$
 = 130 [W] > Average continuous
regenerative power = -25.1 [W] \rightarrow OK

Motor temperature calculation

(1) Total torque and load torque ratio TF in each operation block

Calculate the load torque ratio from the total torque in each operation block.

Operation	ation Operating Total torque in each operation block		Load torque ratio
block	status	[N·m]	[%]
1)	Acceleration	$T_{1} = \text{Acceleration torque } T_{a} + \text{Maximum load torque } T_{LRmax}$ $= \boxed{18.5+22.9} = \boxed{41.4}$	$TF_{1} = \frac{ T_{1} }{T_{M}} \times 100 = \boxed{\frac{ 41.4 }{29.2} \times 100} = \boxed{141}$
2)	High-speed	T_2 = Load torque T_{LR} = 22.9	$TF_{2} = \frac{ T_{2} }{T_{M}} \times 100 = \boxed{\frac{ 22.9 }{29.2} \times 100} = \boxed{78}$
3)	Deceleration	$T_3 = \text{Deceleration torque} - T_d + \text{Minimum load torque TLRmin}$ $= \boxed{-18.5+17.2} = \boxed{-1.3}$	$TF_{3} = \frac{ T_{3} }{T_{M}} \times 100 = \boxed{\frac{ -1.3 }{29.2} \times 100} = \boxed{4}$
4)	Low-speed	T_4 = Load torque T_{LR} = 22.9	$TF_{4} = \frac{ T_{4} }{T_{M}} \times 100 = \boxed{\frac{ 22.9 }{29.2} \times 100} = \boxed{78}$
5)	Stop	$T_5=$ 0 (Stop status in the block)	TF₅= 0

(2) The motor current I_1 , I_2 ...In [%] and the cooling coefficient C_1 , C_2 ... C_n

Calculate the motor current l₁, l₂...ln [%] and the cooling coefficient C₁, C₂...C_n from the average running frequency and the load torque ratio obtained in (1).

Operation block	Time period in the block [s]	Average running frequency [Hz]	Load torque ratio [%]	Cooling coefficient	Motor current [%]	In ² ×tn	Cn×tn
1)	t1= 3.4	$\frac{\text{fmax}}{2} = \frac{50}{2} = 25$	TF ₁ = 141	C ₁ = 0.70	I ₁ = 138	l₁²×t₁ = 64749.6	C1×t1 = 2.38
2)	t2= 6.2	fmax= 50	TF ₂ = 78	C ₂ = 0.93	l ₂ = 84	$l_2^2 \times t_2$ = 43747.2	C ₂ ×t ₂ = 5.77
3)	t₃= <u>3.3</u>	$\frac{\frac{\text{fmax + fmin}}{2}}{\frac{50+1.5}{2}} = 25.75$	TF3= 4	C ₃ = 0.71	I ₃ = 50	l₃²×t₃ = 8250	C ₃ ×t ₃ = 2.34
4)	t ₄ = 2.1	fmin= 1.5	TF4= 78	C ₄ = 0.4	l ₄ = 84	$ _4^2 \times t_4$ = 14817.6	$\begin{array}{c} C_4 \times t_4 \\ = 0.84 \end{array}$
5)	t₅= <u>10.0</u>	0 (Stop status in the block)	TF₅= 0	C₅= 0.4	l5= 0	= 0	$\begin{array}{c} C_5 \times t_5 \\ = 4.0 \end{array}$

Cooling coefficient C_n : Motor and brake characteristics in TECHNICAL NOTE No.30 Motor current In: Motor and brake characteristics in TECHNICAL NOTE No.30

(3) Temperature assessment for the motor

· Equivalent current of motor torque IMC

Equivalent current of motor torque
$$I_{MC} = \sqrt{\frac{\Sigma(\ln^2 \times t_n)}{\Sigma(C_n \times t_n)}} = 91.8$$
 [%]

· Temperature assessment

OAssessment condition

Equivalent curre	ent of motor torque I _{MC} < 100[%]	
·Assessment	I _{MC} = 91.8 [%] < 100 [%] →	ОК

(4) Electronic thermal relay check

• Calculate the ratio of the electronic thermal relay operation time to the motor current In in each operation block by referring to TECHNICAL NOTE No.30 (Electronic thermal relay characteristic).

Operation	Time period in	Average running	Motor current	Electronic thermal relay operation time	
block	the block [s]	frequency [Hz]	[%]	[S]	
1)	t ₁ = 3.4	25	l ₁ = 138	tтнм1= 70	
• • •	0.4	20		(from the operation curve at 20Hz)	
2)	t ₂ = 6.2	50	l ₂ = 84	t _{THM2} = No operation	
3)	t₃= 3.3	25.75	I ₃ = 50	t _{THM3} = No operation	
4)	t - [21]	15	I ₄ = 84	tтнм4= 300	
4)	4) $t_4 = 2.1$ 1.5	14 - 04	(from the operation curve at 0.5Hz)		
5)	t₅= 10.0	0	I ₅ = 0	t _{THM5} = No operation	

· Assessment for the electronic thermal relay operation

©Assessment condition

Time in each ope	ration block tn $<$	Electronic ther	rmal relay operation time tTHMn
·Assessment	t ₁ = 3.4 < 1	тнм1 = 70	→ OK

· Assessment

(5) Transistor protection thermal check

· Calculate the load ratio to the rated inverter current in each operation block.

t₄ = 2.1 < t_{THM4} = 300

Operation block	Motor current [%]	Load ratio to the rated inverter current [%]		
1)	I ₁ = 138	$TF_{INV1} = I_1 \times \frac{\text{Rated motor current } [A]}{\text{Rated inverter current } [A]} = \boxed{138 \times \frac{21}{33}} = \boxed{87.8}$		
2)	I ₂ = 84	$TF_{INV2} = I_2 \times \frac{\text{Rated motor current } [A]}{\text{Rated inverter current } [A]} = \boxed{84 \times \frac{21}{33}} = \boxed{53.5}$		
3)	I ₃ = 50	$TF_{INV3} = I_3 \times \frac{\text{Rated motor current } [A]}{\text{Rated inverter current } [A]} = 50 \times \frac{21}{33} = 31.8$		
4)	I4= 84	$TF_{INV4} = I_4 \times \frac{\text{Rated motor current } [A]}{\text{Rated inverter current } [A]} = \boxed{84 \times \frac{21}{33}} = \boxed{53.5}$		
5)	I5= 0			
	· · · · · · · · · · · · · · · · · · ·			

Rated motor current is 21 [A] for SF-JR 5.5kW 4P (200V, 60Hz)Motor characteristic table in
TECHNICAL NOTE No.30Rated inverter current is 33 [A] for FR-A520-7.5KInverter catalogue

· Assessment for the transistor protection thermal operation

OAssessment condition

:

:

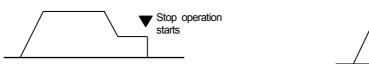
•

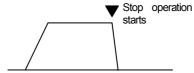
Load ratio to the rated inverter current in each operation block TF_{INVN} \leq 150[%] (Note)

(Note) It is 120% for the FR-F500 series inverters.

·Assessment

- TFINV1 to TFINV5 < 150[%] \rightarrow
- [Final selection]
- Motor
- Inverter
- Brake resistor


SF-JR 5.5kW 4P FR-A520-7.5K(Advanced magnetic flux vector control) Not required (inverter built-in brake)


OK

Assessment for the stop accuracy

The following section assesses the stop accuracy in the two stop methods.

Stop from the low-speed (creep speed) operation Stop from the high-speed operation with a TB brake

Low-speed (creep speed) operation

(1) Characteristics of a TB brake

Refer to TB-7.5 in (2) Brake characteristic (Chapter 4 Motor and brake characteristic) in TECHNICAL NOTE No.30.

Rated brake torque of TB-7.	5:	Тв=	75.0	[N·m]
Coasting time	:	t 01=	0.1	[S]
Brake moment of inertia	:	J _B =	0.0016	[kg·m²]

(2) Stop accuracy when the machine stops from the low-speed (creep speed) operation

• Time to stop tb = $t_{01}+t_{11}$

$$= t_{01} + \frac{(J_{M} + J_{B} + J_{L}) \times Nmin}{9.55 \times (T_{B} + T_{LR}min)} = 0.1 + \frac{(0.028 + 0.0016 + 0.37) \times 45}{9.55 \times (75.0 + 17.2)}$$

$$= 0.1 + 0.020 = 0.120$$
[s]

· Distance to stop $S = S_{01} + S_{11}$ (Creep speed Vmin = 3m/min)

$$= \left(t_{01} \times \frac{V_{\min}}{60} + t_{11} \times \frac{1}{2} \times \frac{V_{\min}}{60} \right) \times 10^{3} = \left[\left(0.1 \times \frac{3}{60} + 0.020 \times \frac{1}{2} \times \frac{3}{60} \right) \times 10^{3} \right] = 5.5 \text{ [mm]}$$

· Estimated stop accuracy

$$\Delta \varepsilon = \pm \frac{S}{2} = \pm \frac{5.5}{2} = \pm 2.75$$
 [mm]

(3) Stop accuracy when the machine suddenly stops from the high-speed operation by a TB brake \cdot Time to stop tb = to1+ t1

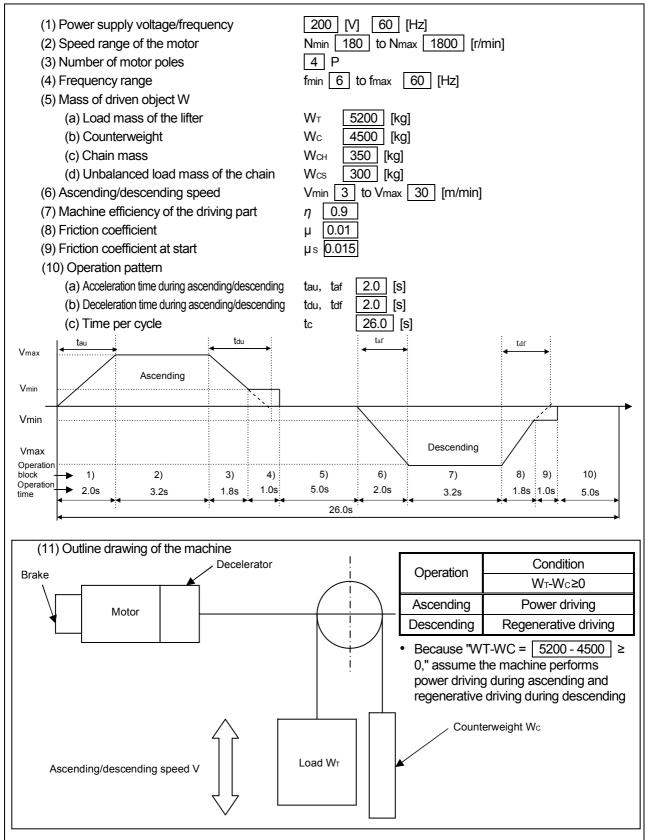
$$= t_{01} + \frac{(J_{M} + J_{B} + J_{L}) \times Nmax}{9.55 \times (T_{B} + T_{LR}min)} = 0.1 + \frac{(0.028 + 0.0016 + 0.37) \times 1500}{9.55 \times (75.0 + 17.2)}$$

$$\cdot \text{ Distance to stop } S=S_{01}+S_{11} \qquad (\text{High}$$

igh speed Vmax = 100m/min)

$$= \left(t_{01} \times \frac{V_{max}}{60} + t_{11} \times \frac{1}{2} \times \frac{V_{max}}{60} \right) \times 10^3 = \boxed{0.1 \times \frac{100}{60} + 0.681 \times \frac{1}{2} \times \frac{100}{60} \times 10^3} = \boxed{734} \text{ [mm]}$$

· Estimated stop accuracy


$$\Delta \varepsilon = \pm \frac{S}{2} = \pm \frac{734}{2} = \pm 367$$
 [mm]

From the above assessments, the following observation can be concluded; the stop accuracy radically improves by driving the motor at the low-speed (creep speed) operation first then stop it with the mechanical brake.

CHAPTER 8 SELECTION EXAMPLE FOR LIFT OPERATION (LIFT WITH

COUNTERWEIGHT)

(Load/operation specification)

Calculation of required power and load torque

(1) Required power for the load P_{LR}

 $\cdot \text{ Required power for the load } P_{LR} = \frac{W \times V_{max}}{6120 \times \eta} = \frac{1000 \times 30}{6120 \times 0.9} = 5.45 \text{ [kW]}$

Mass of driven object W: W= | WT-Wc | +Wcs = | 5200-4500 | +300 =1000[kg]

(2) Load torque at motor shaft TLR

· Load torque during power driving TLU=

 $\frac{9.8 \times W \times V_{\text{max}}}{2\pi \,\text{Nmax} \times \eta} + \frac{\mu \times 9.8 \times W_{\text{ALL}} \times V_{\text{max}}}{2\pi \,\text{Nmax} \times \eta} = \left| \frac{9.8 \times 1000 \times 30}{2\pi \times 1800 \times 0.9} + \frac{0.01 \times 9.8 \times 10050 \times 30}{2\pi \times 1800 \times 0.9} \right| = \boxed{31.8} \text{ [N·m]}$

Mass of driven object W: W=WT-WC+WCs=5200-4500+300=1000[kg] WALL=5200+4500+350=10050[kg]

·Load torque during regenerative driving TLf=

 $\frac{9.8 \times W \times \eta \times V_{\text{max}}}{2\pi N_{\text{max}}} = \frac{9.8 \times -1000 \times 1.0 \times 30}{2\pi \times 1800} = -26.0 \quad \text{[N·m]}$

(Calculate with "machine efficiency η =1" and "friction coefficient μ =0" considering the safety.)

Mass of driven object W: W=Wc-WT-Wcs=4500-5200-300=-1000[kg]

 \cdot Load torque at motor shaft T_{LR}

Because the load torque during power driving T_{LU} > the load torque during regenerative driving T_{Lf} , perform the following calculations as T_{LR} = T_{LU} .

- 2

(3) Load moment of inertia at motor shaft JL

$\cdot \text{ Load moment of inertia of the lifter } J_{T} = W_{T} \times \left(\frac{V_{max}}{2\pi \times N_{max}}\right)^{2} = \left[5200 \times \left(\frac{30}{2\pi \times 1800}\right)^{2}\right] = \left[0.0366\right] [\text{kg} \cdot \text{m}^{2}]$
· Load moment of inertia of the counterweight $J_c = W_c \times \left(\frac{V_{max}}{2\pi \times N_{max}}\right)^2 = \left[\frac{4500 \times \left(\frac{30}{2\pi \times 1800}\right)^2}{2\pi \times 1800}\right] = \left[\frac{0.0317}{1000}\right] [kg \cdot m^2]$
$\cdot \text{ Load moment of inertia of the chain } J_{CH} = W_{CH} \times \left(\frac{V_{max}}{2\pi \times N_{max}}\right)^2 = \left[350 \times \left(\frac{30}{2\pi \times 1800}\right)^2\right] = \left[0.0025\right] [kg \cdot m^2]$
• Load moment of inertia at motor shaft $J_{L} = J_{T} + J_{C} + J_{CH} = 0.0366+0.0317+0.0025$ = 0.0708 [kg·m ²]

Selection of motor and inverter capacities (tentative)

(1) Selection of the motor capacity P_M (tentative)

 $P_M = P_{LR} \times k_P = 5.45 \times 1.2 = 6.54$ [kW] (Tentative selection with $k_P = 1.2$ (20% margin)) From above, tentatively select SF-JR 7.5 [kW] 4P

$$\cdot \text{ Rated motor torque } T_{M} = \frac{9550 \times P_{M}}{N_{M}} = \frac{9550 \times 7.5}{1800} = 39.8 \text{ [N·m]}$$

· Assessment for the motor capacity (tentative)

©Assessment co	ondition	Rated motor torque T _M		≥	Load torque TLR		
· Assessment	Tм= 39	9.8 [N·m]	≥	T _{LR} = 31	.8 [$[N \cdot m] \rightarrow$	OK

(2) Selection of the inverter capacity (tentative)

Tentatively select the inverter capacity FR-A520-7.5K, which has the same capacity with the tentatively selected motor. Because the inverter is used for a lift, assume using Advanced magnetic flux vector control.

Assessment for the start

(1) Starting torque of the motor

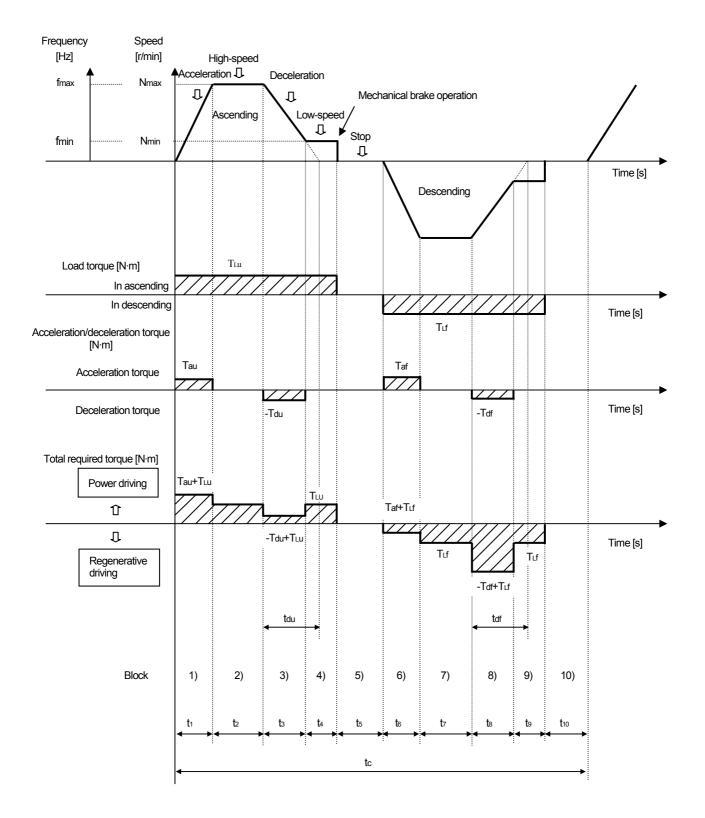
• Starting torque of the motor $T_{MS}=T_M \times \alpha_S \times \delta = 39.8 \times 1.5 \times 0.85 = 50.7$ [N·m]

Starting torque coefficient α_s : 1.5	Power driving performance data in TECHNICAL NOTE No.30
Hot coefficient δ : 0.85	Outline of Technical Note No.30 [DATA] in TECHNICAL NOTE
	No.30

	· Load torque	e at start T⊾s =					
	9.8×W×V _{max}	$+ \frac{\mu_{s} \times 9.8 \times W_{ALL} \times V_{max}}{=}$	9.8×1000×30	0.015×9.8×10050×30	[h]		
	$2\pi N$ max× η	$=$ $2\pi Nmax \times \eta$	2 <i>π</i> ×1800×0.9	$\left \frac{1}{2\pi \times 1800 \times 0.9} \right = 33.3$	[IN·III]		
(2)	Assessment f						
	Maximum st	arting torque of the motor T	$s \geq Load$ torc	ue at start T⊾s			
	· Assessmer	nt T _{MS} = <u>50.7</u> [N·m]	≥ TLS= <u>33.3</u>	[N·m] → OK			
As	sessment for the	e low-speed and high-speed	loperations				
(1)	Assessment f	or the power low-speed o	peration				
	· Output torq	ue of the motor at power lov	v-speed operation				
	Output torque of the motor at power low-speed operation = $T_M \times \alpha_m \times \delta = \boxed{39.8 \times 1.5 \times 0.85} = \boxed{50.7} [N \cdot m]$						
	Maximum sho	ort-time torque coefficient an	n : 1.5 (fmin at 6Hz)	Power driving performance data			
		•	, , , , , , , , , , , , , , , , , , ,	in TECHNICAL NOTE No.30			
	Hot coefficien	t δ : 0.85		Outline of Technical Note No.30 [DATA] in TECHNICAL NOTE No.30			

·Assessment for the power low-speed operation

©Assessment condition		$T_{M} \times \alpha_{M} \times \delta$ > Load torque T_{LU}	
· Assessment T _M	< a	$m \times \delta = 50.7 [N \cdot m] > T_{LU} = 33.3 [N \cdot m] \rightarrow 0$	ОК


(2) Assessment for the regenerative low-speed operation

(2)	· Output torque of the moto	or at regenerative low-spe tor at regenerative low-sp	ed operation
	Deceleration torque coeffici	ient β : 1.0 (fmin at 6Hz)	Power driving performance data in TECHNICAL NOTE No.30
	Hot coefficient	δ : 0.85	Outline of Technical Note No.30 [DATA] in TECHNICAL NOTE No.30
	· Assessment for the reger	nerative low-speed operat	ion
	©Assessment condition	$T_{M} \times \beta \times \delta > Load tor$	que T _L f
	· Assessment $T_{M} \times \beta \times \beta$	δ= <u>33.8</u> [N·m] >	Γ _L f = 26.0 [N·m] → OK
(3)	Assessment for the power	high-speed operation	
	· Output torque of the moto	or at power high-speed op	peration
	Output torque of the mo = $T_M \times \alpha m$ = 39.8 × 1.5	tor at power high-speed o = 59.7 [N·m]	peration
	Maximum short-time operatior	•	5 (fmax at 60Hz) performance data in TECHNICAL NOTE No.30
	· Assessment for the powe	er high-speed operation	
	©Assessment condition	T _M ×am > Load torqu	
	· Assessment T _M ×an	n = 59.7 [N·m] > Tu	J= <u>33.3</u> [N·m] → OK
(4)	Assessment for the regen	erative high-speed oper	ation
	· Output torque of the moto	or at regenerative high-sp	eed operation
		tor at regenerative high-s _f = <u>39.8</u> [N·m]	peed operation
	Deceleration torque coefficie Regeneration performance d	• • •	E No.30
l	· Assessment for the reger	nerative high-speed opera	tion
	©Assessment condition	$T_{M} \times \beta > Load t$	orque Tıf
	• Assessment $T_{M} \times \beta$ =	= <u>39.8</u> [N·m] > T _L f	= 26.0 [N·m] → OK

Assessment for the acceleration/deceleration

(1) Applied torque to the motor in each operation block

Assume the operation pattern of the figure below (power driving during ascending, regenerative driving during descending). Calculate the applied torque to the motor in operation blocks 1) to 10).

(2) Acceleration torque Tau, Taf

Acceleration torque	$= \frac{\sum J \times Nmax}{9.55 \times tau} = \frac{1}{2}$	(J _M +J _B +J∟)×Nmax	(0.04+0.0016+0.0708)×1800
during ascending Tau	9.55×tau	9.55×tau	9.55×2.0
	= <u>10.6</u> [N·m]		
Motor moment of inertia J Brake moment of inertia J Load moment of inertia J∟	в: 0.0016[kg·m²] (ТВ-7	.5) Brake characteristic i	able in TECHNICAL NOTE No.3 n TECHNICAL NOTE No.30 ower and the load torque
Acceleration torque during descending Taf	$= \frac{\sum J \times N_{max}}{9.55 \times t_{af}} =$	$\frac{(J_{M}+J_{B}+J_{L})\times N_{max}}{9.55\times t_{af}} =$	(0.04+0.0016+0.0708)×1800 9.55×2.0
	= 10.6 [N·m]		
Motor moment of inertia J Brake moment of inertia J Load moment of inertia J	₃: 0.0016[kg·m²] (TB-7.	.5) Brake characteristic i	able in TECHNICAL NOTE No.3 n TECHNICAL NOTE No.30 wer and the load torque
Deceleration torque Td		(hut lat h)XNmay	(0.04+0.0016+0.0708)×1800
			I IU U#TU UU IUTU U/ UOIA IOUU
Deceleration torque during ascending Tdu		$=\frac{(J_M+J_B+J_L)\times Nmax}{9.55\times tdu}=$	9.55×2.0
	$= \frac{\sum J \times Nmax}{9.55 \times tdu} =$ $= 10.6 [N \cdot m]$	9.55×tdu =	
during ascending Tdu Motor moment of inertia Jr	= <u>10.6</u> [N·m] (N·m] (10.04[kg·m ²] (10.0016[kg·m ²]	Motor characteristic t 5) Brake characteristic i	9.55×2.0
during ascending Tdu Motor moment of inertia Ja Brake moment of inertia Ja	= <u>10.6</u> [N·m] (N·m] (10.04[kg·m ²] (10.0016[kg·m ²]	Motor characteristic t 5) Brake characteristic i From the required po	9.55×2.0 able in TECHNICAL NOTE No.3 n TECHNICAL NOTE No.30
during ascending Tdu Motor moment of inertia Ja Brake moment of inertia Ja Load moment of inertia J∟	= <u>10.6</u> [N·m] = 0.04[kg·m ²] = 0.0016[kg·m ²] (TB-7. : 0.0708[kg·m ²]	Motor characteristic t 5) Brake characteristic i From the required po calculation (3)	9.55×2.0 able in TECHNICAL NOTE No.3 n TECHNICAL NOTE No.30 wer and the load torque (0.04+0.0016+0.0708)×1800

(4) Total torque

 \cdot Calculate the total torque in each operation block using the formulas in the table below.

Total torque	Operation	Operation block	Total torque [N·m]
Total acceleration	Power driving	1)	T ₁ =Tau+T _{LU} = 10.6+33.3 = 43.9
torque	Regenerative driving	6)	$T_6=T_{af}+T_{Lf}=10.6+(-26.0)$ = -15.4
Total	Power driving	3)	T ₃ =-Tdu+T _L u = -10.6+33.3 = 22.7
deceleration torque	Regenerative driving	8)	T_8 =-Tdf+TLf = -10.6+(-26.0) = -36.6
Total torque	Power driving	2), 4)	T ₂ , T ₄ =T _{LU} = 33.3
during constant-speed operation (high/low speed)	Regenerative driving	7), 9)	T ₇ , T ₉ =T _L f = <u>-26.0</u>

(5) Assessment for the acceleration

 Output torque of the motor 	T _M ×αa =	39.8×1.4	=	55.7	[N·m]
--	----------------------	----------	---	------	-------

Linear acceleration torque coefficient α_a : 1.4 Power driving performance data in TECHNICAL NOTE No.30

OAssessment condition

 $T_M \times \alpha_a > Total acceleration torque T_{at}$

For the total acceleration torque T_{at} , use T_1 in the operation block 1) or T_6 in the operation block 6), whichever is larger. Because $T_1 > T_6$ at this machine, assess for the acceleration as the total acceleration torque $T_{at}=T_1$.

Regenerative acceleration is performed when $T_1<0$ and $T_6<0$. The maximum torque required for regenerative operation is calculated in the assessment for deceleration. It does not have to be calculated for the assessment for acceleration.

 $T_{M} \times \alpha_{a} = 55.7 [N \cdot m] > T_{at} = 43.9 [N \cdot m] \rightarrow OK$

Assessment

(6) Assessment for the deceleration

```
· Output torque of the motor T_M \times \beta = 39.8 \times 1.0 = 39.8 [N·m]
```

Deceleration torque coefficient β : 1.0 (minimum value in the operation range of 6 to 60Hz) Regeneration performance data in TECHNICAL NOTE No.30

©Assessment condition

 $T_M \times \beta$ > Total deceleration torque $|T_{dt}|$

For the total deceleration torque T_{dt} , use T_3 in the operation block 3) or T_8 in the operation block 8), whichever is smaller. Because $T_3>T_8$ at this machine, assess for the deceleration as the total deceleration torque $T_{dt}=|T_8|$.

Power deceleration is performed when $T_3>0$ and $T_8>0$. The maximum torque required for power operation is calculated in the assessment for acceleration. It does not have to be calculated for the assessment for deceleration.

 $T_{M} \times \beta = 39.8$ [N·m] > $|T_{dt}| = 36.6$ [N·m] \rightarrow OK · Assessment

Permissible temperature calculation for the brake unit

(1) Regenerative power calculation

The following table shows how the power in different operation blocks are calculated. When the obtained value is a negative value, it is a regenerative power.

Operation block	Power [W]	Operating status
1)	$W_1 = 0.1047 \times \frac{Nmax}{2} \times T_1 = \boxed{0.1047 \times \frac{1800}{2} \times 43.9} = \boxed{4137}$	Power acceleration
2)	W ₂ =0.1047 ×Nmax × T ₂ = 0.1047 × 1800 × 33.3 = 6276	Power high-speed operation
3)	$W_{3}=0.1047 \times \frac{Nmax + Nmin}{2} \times T_{3} = \boxed{0.1047 \times \frac{1800 + 180}{2} \times 22.7} = \boxed{2353}$	Power deceleration
4)	W4=0.1047 ×Nmin × T4 = 0.1047×180×33.3 = 628	Power low-speed operation
5)	W_5 =Not calculated as the machine is in the stop status.	Stop
6)	$W_{6}=0.1047 \times \frac{Nmax}{2} \times T_{6} = 0.1047 \times \frac{1800}{2} \times (-15.4) = -1451$	Regenerative acceleration
7)	W ₇ =0.1047 ×Nmax × T ₇ = 0.1047×1800×(-26.0) = -4900	Regenerative high-speed operation
8)	$W_{8}=0.1047 \times \frac{Nmax + Nmin}{2} \times T_{8} = \boxed{0.1047 \times \frac{1800 + 180}{2} \times (-36.6)} = \boxed{-3794}$	Regenerative deceleration
9)	$W_9=0.1047 \times Nmin \times T_9 = 0.1047 \times 180 \times (-26.0) = -490$	Regenerative low-speed operation
10)	W_{10} =Not calculated as the machine is in the stop status.	Stop

(2) Check for the short-time regenerative power

Assess only the operation blocks where the power W_n is a negative value (in regenerative status). Assess the operation blocks 6), 7), 8), and 9) based on the calculation result of (1).

OAssessment condition

ĺ	Short-time permissible power of a	>	Regenerative power in each operation
	braking option WRs	-	block Wn ×0.9

· Assessment

Operation block 7) W_{RS} = 2860 [W] < W_7 × 0.9= 4900 × 0.9 = 4410 [W] → Not acceptable

Short-time permissible power (built-in brake) W_{RS}: 2860 when the deceleration time (usage time) is 1.8s Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30 The result shows that the inverter's built-in brake does not consume enough regenerative power. Therefore, consider using the braking option FR-BU-15K (FR-BR-15K). Assess the regenerative power of the braking option.

(The continuous operation permissible power is not enough with FR-ABR-7.5. The short-time permissible power is not enough with BU-7.5.)

· Assessment

Operation block 6)	$W_{RS} = 16500 [W] > W_6 \times 0.9 = -1451 \times 0.9 = 1306 [W] \rightarrow 0.9$
Operation block 7)	$ \begin{array}{c c} W_{RS} = & 16500 & [W] > W_7 \times 0.9 = & -4900 \times 0.9 & = & 4410 & [W] \rightarrow \\ W_{RS} = & 16500 & [W] > W_8 \times 0.9 = & -3794 \times 0.9 & = & 3415 & [W] \rightarrow \\ \end{array} $
Operation block 8)	$W_{RS} = 16500 \ [W] > W_8 \times 0.9 = -3794 \times 0.9 = 3415 \ [W] \rightarrow -3415 $
Operation block 9)	$W_{RS} = 16500 [W] > W_9 \times 0.9 = -490 \times 0.9 = 441 [W] \rightarrow 0.9$

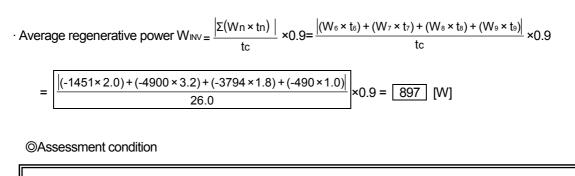
Short-time permissible power (FR-BU-15K) $W_{\text{RS:}}$ 16500 when the deceleration time (usage time) is 2.0s, 3.2s, 1.8s, or 1.0s

Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30

(3) Check for the regenerative power in the continuous regenerative operation range

Assess the regenerative power for the operation blocks where the regenerative status is continuous. Regenerative operation is continuous in the operation blocks 6) to 9) in this machine, so check these operation blocks.

 \cdot Average regenerative power in the continuous regenerative operation range


$$W_{nc} = \frac{\left| \Sigma(W_{n} \times t_{n}) \right|}{\Sigma t_{n}} \times 0.9 = \frac{\left| (W_{6} \times t_{6}) + (W_{7} \times t_{7}) + (W_{8} \times t_{8}) + (W_{9} \times t_{9}) \right|}{t_{6} + t_{7} + t_{8} + t_{9}} \times 0.9$$
$$= \frac{\left| (-1451 \times 2.0) + (-4900 \times 3.2) + (-3794 \times 1.8) + (-490 \times 1.0) \right|}{2.0 + 3.2 + 1.8 + 1.0} \times 0.9 = 3238 \times 0.9 = 2914$$
[W]

OAssessment condition

	Short-time permissible power of a braking option W _{RS} Average regenerative power in the continuous regenerative operation range W _{nc}			
•	· Assessment W_{RS} = 16500 [W] > W_{nc} = 2914 [W] \rightarrow OK			
Short-time permissible power (FR-BU-15K) WRS:16500 when the deceleration time (usage time) is 8.0s Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30				

(4) Check for the average continuous regenerative power

Check the average power to be regenerated to the inverter in a cycle. The operation blocks in the regenerative status are 6) to 9) in this cycle.

Average regenerative power W _{INV}	< Continuous operation permissible po	wer of a braking option WRC
• Assessment Continuous operation permissible power of the braking option W _{RC} = 990 [W]	> Average regenerative power $W_{INV} = 897$ [W] \rightarrow	OK

Continuous operation permissible power (FR-BU-15K) W_{RC}: 990 Chapter 3 Regeneration performance data in TECHNICAL NOTE No.30 Motor temperature calculation

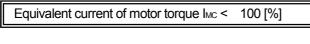
(1) Total torque and load torque ratio TF in each operation block

Calculate the load torque ratio from the total torque obtained in the acceleration/deceleration assessment (4).

Operation block	Operating status	Total torque in the operation block [N·m]	Load torque ratio [%]
1)	Power acceleration	T ₁ = 43.9	$TF_{1} = \frac{ T_{1} }{T_{M}} \times 100 = \boxed{\frac{ 43.9 }{39.8} \times 100} = \boxed{110}$
2)	Power high-speed operation	T ₂ = 33.3	$TF_{2} = \frac{ T_{2} }{T_{M}} \times 100 = \boxed{\frac{ 33.3 }{39.8} \times 100} = \boxed{84}$
3)	Power deceleration	T ₃ = 22.7	$TF_{3} = \frac{ T_{3} }{T_{M}} \times 100 = \boxed{\frac{ 22.7 }{39.8} \times 100} = 57$
4)	Power low-speed operation	T ₄ = <u>33.3</u>	$TF_{4} = \frac{ T_{4} }{T_{M}} \times 100 = \boxed{\frac{ 33.3 }{39.8} \times 100} = \boxed{84}$
5)	Stop	$T_5=$ 0 (Stop status in the block)	TF₅= 0
6)	Regenerative acceleration	T ₆ = -15.4	$TF_{6} = \frac{ T_{6} }{T_{M}} \times 100 = \frac{ -15.4 }{39.8} \times 100 = 39$
7)	Regenerative high-speed operation	T ₇ = -26.0	$TF_{7} = \frac{ T_{7} }{T_{M}} \times 100 = \boxed{\frac{ -26.0 }{39.8} \times 100} = 65$
8)	Regenerative deceleration	T ₈ = <u>-36.6</u>	$TF_{8} = \frac{ T_{8} }{T_{M}} \times 100 = \boxed{\frac{ -36.6 }{39.8} \times 100} = \boxed{92}$
9)	Regenerative low-speed operation	T ₉ = -26.0	$TF_{9} = \frac{ T_{9} }{T_{M}} \times 100 = \boxed{\frac{ -26.0 }{39.8} \times 100} = 65$
10)	Stop	T ₁₀ = 0 (Stop status in the block)	TF10= 0

(2) The motor current l₁, l₂...ln [%] and the cooling coefficient C₁, C₂...C_n Calculate the motor current l₁, l₂...ln [%] and the cooling coefficient C₁, C₂...C_n from the average running frequency and the load torque ratio obtained in (1).

	inequency a			<i>)</i> .			
Operation block	Time period in the block [s]	Average running frequency [Hz]	Load torque ratio [%]	Cooling coefficient	Motor current [%]	In ² ×tn	Cn×tn
1)	t1= 2.0	$\frac{\text{fmax}}{2} = 30$	TF ₁ = 110	C ₁ = 0.76	I ₁ = 109	l₁²×t₁ = 23762	C1×t1 = 1.52
2)	t₂= 3.2	fmax= 60	TF ₂ = 84	C ₂ = 1.0	I ₂ = 88	l₂²×t₂ = 24781	C ₂ ×t ₂ = 3.2
3)	t₃= 1.8	$\frac{\text{fmax} + \text{fmin}}{2} = 33$	TF₃= 57	C ₃ = 0.79	I ₃ = 72	l₃²×t₃ = 9331	C ₃ ×t ₃ = 1.42
4)	t4= 1.0	fmin= 6	TF ₄ = 84	C ₄ = 0.4	I ₄ = 88	₄ ² ×t₄ = 7744	$\begin{array}{c} C_4 \times t_4 \\ = 0.4 \end{array}$
5)	t₅= 5.0	0	TF₅= 0	C5= 0.4	I5= 0	= 0	C ₅ ×t ₅ = 2.0
6)	t ₆ = 2.0	$\frac{\text{fmax}}{2} = 30$	TF6= 39	C ₆ = 0.76	I ₆ = 62	l ₆ ² ×t ₆ = 7688	C ₆ ×t ₆ = 1.52
7)	t ₇ = 3.2	fmax= 60	TF7= 65	C7= 1.0	I7= 76	l ₇ ²×t ₇ = 18483	$C_7 \times t_7$ = 3.2
8)	t₀= 1.8	$\frac{\text{fmax} + \text{fmin}}{2} = 33$	TF8= 92	C ₈ = 0.79	I ₈ = 92	l ₈ ²×t ₈ = 15235	C ₈ ×t ₈ = 1.42
9)	t₀= 1.0	fmin= 6	TF9= 65	C ₉ = 0.4	I9= 76	l ₉ ²×t₀ = 5776	C ₉ ×t ₉ = 0.4
10)	t ₁₀ = 5.0	0	TF ₁₀ = 0	C ₁₀ = 0.4	I ₁₀ = 0	$I_{10}^2 \times t_{10}$	$C_{10} \times t_{10}$ = 2.0


(3) Temperature assessment for the motor

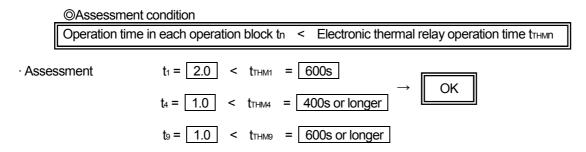
· Equivalent current of motor torque IMC

Equivalent current of motor torque
$$I_{MC} = \sqrt{\frac{\Sigma(\ln^2 \times tn)}{\Sigma(Cn \times tn)}} = 81.3$$
 [%]

· Temperature assessment

OAssessment condition

· Assessment


 $I_{MC} = \boxed{81.3} [\%] < 100 [\%] \rightarrow \boxed{OK}$

(4) Check for the electronic thermal relay

Calculate the ratio of the electronic thermal relay operation time to the motor current I_n in each operation block by referring to TECHNICAL NOTE No.30 (Electronic thermal relay characteristic).

Operation block	Time period in the block [s]	Average running frequency [Hz]	Motor current [%]	Electronic thermal relay operation time [s]
1)	t1= 2.0	$\frac{\text{fmax}}{2} = 30$	I1= 109	t _{THM1} = 600s
2)	t ₂ = 3.2	fmax= 60	l ₂ = 88	tTHM2= No operation
3)	t ₃ = 1.8	$\frac{\text{fmax} + \text{fmin}}{2} = \boxed{33}$	I ₃ = 72	t _{THM3} = No operation
4)	t ₄ = 1.0	fmin= 6	I ₄ = 88	tTHM4= 400s or longer
5)	t₅= 5 .0	0	I5= 0	tTHM5= No operation
6)	t ₆ = 2.0	$\frac{\text{fmax}}{2} = 30$	l ₆ = 62	t _{THM6} = No operation
7)	t7= 3.2	fmax= 60	I ₇ = 76	tTHM7= No operation
8)	t₀= 1.8	$\frac{\text{fmax} + \text{fmin}}{2} = \boxed{33}$	I ₈ = 92	t _{THM8} = No operation
9)	t ₉ = 1.0	fmin= 6	l ₉ = 76	tTHM9= 600s or longer
10)	t10= 5.0	0	I ₁₀ = 0	tтнм10= No operation

· Assessment for the electronic thermal relay operation

(5) Check for the transistor protection thermal

Calculate the load ratio to the rated inverter current in each operation block.

Operation block	Motor current [%]	Load ratio to the rated inverter current [%]
1)	I ₁ = 99	$TF_{INV1} = I_1 \times \frac{\text{Rated motor current } [A]}{\text{Rated inverter current } [A]} = 109 \times \frac{28}{33} = 92.5$
2)	l ₂ = 81	$TF_{INV2} = I_2 \times \frac{\text{Rated motor current [A]}}{\text{Rated inverter current [A]}} = \frac{88 \times \frac{28}{33}}{33} = 74.7$
3)	I ₃ = 65	$TF_{INV3}=I_{3} \times \frac{\text{Rated motor current [A]}}{\text{Rated inverter current [A]}} = \boxed{72 \times \frac{28}{33}} = \boxed{61.1}$
4)	I4= 81	$TF_{INV4} = I_4 \times \frac{\text{Rated motor current [A]}}{\text{Rated inverter current [A]}} = \boxed{88 \times \frac{28}{33}} = \boxed{74.7}$
5)	l5= 0	
6)	I6= 62	$TF_{INV6} = I_6 \times \frac{\text{Rated motor current [A]}}{\text{Rated inverter current [A]}} = \boxed{62 \times \frac{28}{33}} = \boxed{52.6}$
7)	I7= 76	$TF_{INV7} = I_7 \times \frac{\text{Rated motor current [A]}}{\text{Rated inverter current [A]}} = \frac{76 \times \frac{28}{33}}{76 \times \frac{28}{33}} = 64.5$
8)	I ₈ = 92	$TF_{INV8} = I_8 \times \frac{\text{Rated motor current [A]}}{\text{Rated inverter current [A]}} = 92 \times \frac{28}{33} = 78.1$
9)	l∍= <u>76</u>	$TF_{INV9}=I_{9}\times \frac{\text{Rated motor current [A]}}{\text{Rated inverter current [A]}} = 76\times \frac{28}{33} = 64.5$
10)	I ₁₀ = 0	

 Rated motor current
 28[A] : SF-JR
 7.5kW
 4P(200V, 60Hz)

 Rated inverter current
 33[A] : FR-A520-7.5K

 \cdot Assessment for the transistor protection thermal operation

OAssessment condition

Load ratio to the rated inverter current in each operation block $TF_{INVN} \leq 150[\%]$ (Note)

(Note) It is 120% for the FR-F500 series inverters.

Assessment	$TF_{INV1} \text{ to } TF_{INV10} < 150 \ [\%] \rightarrow \qquad OK$	
[Final selection] • Motor	: SF-JR 7.5kW 4P	
InverterBrake resistor	 FR-A520-7.5K (Advanced magnetic flux vector control) FR-BU-15K(FR-BR-15K) 	

Assessment for the stop accuracy

(1) Characteristics of a brake

The following characteristic of the mechanical brake TB-7.5 are obtained from TECHNICAL NOTE No.30 [DATA].

 Rated brake torque 	: Тв	=	75	[N·m]
• Coasting time (cutoff in advance)	: t o1	=	0.1	[S]
 Brake moment of inertia 	: Ј в	=	0.0016	[kg·m²]

(2) Stop accuracy when the machine stops from the low-speed (creep speed) operation

 \cdot Time to stop tb =t₀₁+t₁₁

$$=t_{01} + \frac{(J_{M}+J_{B}+J_{L})\times Nmin}{9.55\times(T_{B}+T_{LRMin})} = 0.1 + \frac{(0.04+0.0016+0.0708)\times 180}{9.55\times(75.0+33.3)}$$
$$= 0.1 + 0.020 = 0.120 [s]$$

· Distance to stop $S = S_{01} + S_{11}$ (Creep speed Vmin = 3m/min)

$$= \left(t_{01} \times \frac{V_{\min}}{60} + t_{11} \times \frac{1}{2} \times \frac{V_{\min}}{60}\right) \times 10^{3} = \left[\left(0.1 \times \frac{3}{60} + 0.020 \times \frac{1}{2} \times \frac{3}{60}\right) \times 10^{3}\right] = 5.5 \text{ [mm]}$$

· Estimated stop accuracy

$$\Delta \varepsilon = \pm \frac{S}{2} = \pm \frac{5.5}{2} = \pm 2.75$$
 [mm]

MITSUBISHI INVERTER